

About the Author:
Edwin Paay is one of Australia's leading exponents in assembly language pro­
gramming on the TRS-80 Model I Microcomputer. Largely self-taught, he has
developed many useful utility programs and written many articles to assist
TRS-80 owners obtain the maximum use from their computers. The Level 2 ROM
Assembly Language Toolkit follows on from his earlier book "Level 2 ROM
Reference Manual" (now out of print) which, at the time, was the leading
reference manual for assembly language programmers wishing to make use of
ROM routines in their own Programs.

Edwin has been technical manager for Micro-80 for the past two years where he
has developed numerous hardware interfaces and improvements for the TRS-80
and other computers.

About the Publishers:
Micro-80 Pty. Ltd., publishes the leading specialist magazine for TRS-80/Video
Genie/System 80 users, in both Australia and the United Kingdom. This monthly
magazine contains new programs, hardware articles, instructional articles for
programmes and many useful hints and tips. This Level 2 ROM assembly
language toolkit has been published in response to requests from many readers
for assistance in using ROM routines in their own programs.

Level 2 RON Assembly Language Toolkit — first edition 1982

Published by:
MICRO-80 Pty. Ltd.

433 Morphett Street, Adelaide,
South Australia. 5000

Tel. (08) 211 7244

Printed by:
G. F. STEVENSON PRINTERS,

36 Sturt Street, Adelaide,
South Australia. 5000

WHO SHOULD BUY THIS PACKAGE?

The LEVEL 2 ROM ASSEMBLY LANGUAGE TOOLKIT is
intended for users of TRS-80 Model 1 and 3 and SYSTEM
80/VIDEO GENIE/PMC-80 microcomputers who are
interested in writing machine language programs, at
whatever level of experience. It will enable the
novice machine language programmer to quickly and
simply make his machine perform useful functions in
machine language, and to successfully debug his or her
programs using the flexible DBUG program included in
this package. On the other hand, the experienced
machine language programmer who uses this package will
find he is writing shorter, more elegant programs to
achieve the desired result.

The BASIC programmer too, will find this manual
helpful. It will give him a much better understanding
of the way in which his BASIC programs use the
computers memory space and will help him write machine
language programs which interface with BASIC in an
efficient and professional manner. In short, if you
use a TRS-80 (tm), then you need this assembly language
development system.

COPYRIGHT (C) 1980 - 1981 Edwin. R. PAAY - ALL
RIGHTS RESERVED. No part of this manual may be
reproduced, stored in a retrieval system or transmitted
in any form or by any means including photocopying,
electronic, mechanical or otherwise without written
permission from the publisher.

The proprietary rights to the BASIC interpreter
which is the subject of the ROM reference section of
this package, are held by MICROSOFT. The author and
publisher of this manual are in no way attempting to
infringe these rights. The purpose of this assembly
language aid, is to assist users of TRS-80 (tm)
microcomputers in using and understanding their
machines to the full.

nor any damages arising from the use of any information
contained herein* This package is sold in an "as is"
condition and is not represented as being free from
errors. (TRS-80 is a trade mark of the TANDY
CORPORATION.)

*** SPECIAL NOTICE ***

The
liability

author and MICRO-80 PRODUCTS assume no
with respect to the use of this publication

***** TABLE OF CONTENTS *****

*** PART ONE ***
Page
Introduction 5

Arithmetic 8
Table 1 - Organization of ACC and AACC......... 9
Table 2 - Arithmetic routines.................... 11
Table 3 - Arithmetic functions.................... 12

Data movement 14
Table 4 - Data movement • ••••••••.••• 15

COMPARE and TEST routines........................ 17
Table 5 - Compare and test routines.............. 19

DATA CONVERSION routines 21
Table 6 - Conversion logic........................22

INPUT routines 24
Table 7 - Character input routines 25
Table 8 - String input routines.................. 26

OUTPUT routines 27
Table 9 - Single byte output • • • • 28
Table 10- String output routine..................29

Demonstration program - Input, output & arithmetic 31

Tape I/O Routines ••••••••••«••••• 32
Demonstration Tape I/O routine 33
Table 11 - Tape I/O and control.................. 34

Variable Organization and locating routines. ... 36
Table 12 - Special purpose routines ••••••• 38
Variable organization........... 39

Error routines••................. 40
Table 13 - Error routine entry points............41

Video control ••••••• •••••• 42
Table 14 - Video control routines •••••••• 43

Graphics.. 44

Keyboard matrix 47

DOS link addresses................................ 50

Intercept addresses 52

Miscellaneous, Table 15 54

Data and tape formats............................ 59
BASIC program & tape format............... 59
SYSTEM tape format................................ 61
EDTASM source file format 62
Data format for files created with "PRINT #” ... 63
Addresses used by EDTASM.......................... 64

Initializing machine language routines 65
Using machine language programs on disk systems . 66

PORT 255 67
The Model 3 I/O byte 4210H 68
Model 3 Port usage................................ 70
The System 80, Video Genie, PMC-80 74

PART 2 ****

Level II ROM routines in numerical order 76
Reserved RAM and Device addresses (Model 1). . . . 106
Reserved RAM addresses common to Model 1 & 3 . . . 107
Model 3 extra ROM addresses..................... 116
Model 3 extra RAM addresses..................... .117

Appendix 1 - Conversion table 119
Appendix 2 - Demonstration program 1 127
Appendix 3 - Demonstration program 2......... 131

‘kirk'k PART 3 ****

Operating instructions for DBUG program D-l

-0000000000-

- LEVEL II ROM REFERENCE SECTION -

--** INTRODUCTION **--

The BASIC interpreter in the TRS-80 (tm)
microcomputer is a machine language program which
resides in a read only memory (ROM) from address 0000
Hex to address 2FFF Hex.in the Model 1 or to 377F Hex.
in the Model 3. The routines in this interpreter have
never been officially revealed. Other publishers have
released books on the Model 1 interpreter which are
interesting to read, but not very practical for the
assembly language programmer who wants to know where
useful routines are stored, which can be used as
subroutine CALLs. To our knowledge no one has released
an assembly language development package such as this
until now.

This manual reveals most usable routines. The
routines are put together in tables, which makes it
easy to locate a routine when needed. The secrets of
the reserved memory are laid bare and best of all,
there are sample programs to illustrate how you can
make use of these routines to simplify and enhance your
own machine language programs.

The LEVEL 2 ROM ASSEMBLY LANGUAGE TOOLKIT is in
three parts. The first two parts are the ROM
REFERENCE SECTION while the third part contains the
operating instructions for the DBUG program supplied on
tape as part of this package.

Part 1 explains in detail how to use the ROM
routines. It contains tables indexed by function so
that you can quickly locate the routine which is best
suited to your particular purpose. It also contains
sample programs which illustrate how the routines may
be used in your own machine language programs.

-5-

- LEVEL II ROM REFERENCE SECTION -

Part 1 also contains discussion on the ACC, AACC and
the NTF which are quite often mentioned in the text.
It is recommended that these sections be read first so
that the reader understands the meaning of these terms.
(Note that the A register contained in the Z80 is
always referred to as the A register and NEVER as
ACCUMULATOR in the text. This is done to avoid
confusing it with the area in memory referred to as
Accumulator).

Part 2 contains an extended memory map which
lists all usable routines and shows where the various
BASIC commands are located in ROM. This serves as a
useful reference to specific addresses in ROM and also
as an adjunct to a disassembled listing.

Part 3 contains detailed operating instructions
for DBUG, a symbolic debugger which operates from disk
or tape. DBUG enables the user to quickly and easily
locate bugs in his programs and fix them with the aid
of single-stepping, dynamic disassembly, memory
editing, examination and modification of Register,
contents, setting break points etc. etc..

In preparing this manual, we have assumed that
our readers understand the Z80 instruction set and have
some experience of programming with the aid of an
assembler. This manual is in no way a substitute for a
good text on Z80 assembly language programming, rather,
it will help to make assembly language programming
easier and less tedious.

-6-

- LEVEL II ROM REFERENCE SECTION -

'k'k'k'k'k PART 1 *****

In this part of the manual, the ROM routines
which are described in numeric order in Part 2 are
organised by function in a series of tables. This
should enable the user to quickly choose the most
suitable routine for his purpose. Each routine listed
in this section also has a description in Part 2, it is
recommended to read both, as often further information
can be found about a routine that way. Some addresses
vary between the Models 1 and 3, or do not exist in the
Model 3. Where this happens, either the Model 3
address will be mentioned in the text or it will be
made clear that the address applies to Model 1 or 3
only.

In interpreting these tables, the following
points should be considered:

if a register is not mentioned
specifically, then the

routine may alter or destroy its contents.

- the addresses given in the Tables are the
entry points to the routines.

•^•** **************

-7-

- LEVEL II ROM REFERENCE SECTION -

— ARITHMETIC —

The arithmetic routines come in three main types:
Integer, single or double-precision. Some information
is required to use these routines. First there is the
NTF, this is the Number Type Flag. It is located at
40AFH in memory and is used by BASIC when it wants to
know what type of number is residing in the ACC area.
The NTF will contain 2 if Integer, 4 if
single-precision, 8 if double-precision or 3 if string.

Then there is the Accumulator area (ACC). This
is the area in memory from 411DH to 4124H, (See Table
1). It is used to store values and the results for
most of the arithemtic routines. The type of number
contained in the ACC can be determined at any time by
testing the NTF. If you are loading a number into the
ACC manually the NTF must also be set in order to
reflect the number type. Note that the NTF actually
contains the data length in all cases except with
strings. (Discussed later).

Finally, there is the Auxiliary Accumulator
(AACC). This is the area 4127H to 412EH in memory. It
is only used by the double-precision arithmetic
routines. Note that the ACC and AACC are changed by
data conversion routines but not by compares.

-8-

LEVEL II ROM REFERENCE SECTION -

ORGANIZATION OF ACC AND AACC

TABLE 1

ADDRESS INTEGER SINGLE
PRECISION

DOUBLE
PRECISION

ACC 411DH LSB
411EH LSB
411FH LSB
4120H LSB
4121H LSB LSB LSB
4122H MSB LSB LSB
4123H MSB MSB
4124H EXP EXP

AACC 4127H LSB LSB LSB
4128H MSB LSB LSB
4129H MSB MSB LSB
412AH EXP LSB
412BH LSB
412CH LSB
412DH MSB
412EH EXP

-9-

- LEVEL II ROM REFERENCE SECTION -

In all the values listed in Table 1, the numbers
are stored as signed numbers. This means that the most
significant bit in the MSB of the value is used as a
sign bit (1 if number is negative or 0 if positive).
The EXPonents are stored in normalized form. The true
EXP is 128 less than the actual number. For more
information see the Level II manual pages 8/8 to 8/10.
The BC and DE registers are used extensively by the
single-precision routines for one of the operands. The
MSB must be in the B reg. and the LSB must be in the E
reg. (4 bytes total).

When it is necessary to CALL an arithmetic
function and one or both of the numbers are of the
wrong type the CINT, CSNG or CDBL routines can be
CALLed. These routines are found in Table 3. All
arithmetic functions return with the result in the ACC.
The integer arithmetic functions however, return with
the result in both the ACC and the HL reg. pair. If
overflow occurs on any of the integer arithmetic
functions the result will automatically be a
single-precision number. The NTF can be tested to see
if such is the case. If any errors occur during the
arithmetic operations, such as divide by zero, an error
message will be printed and control will be passed to
BASIC. Finally, make sure there is enough stack space
for the routines to use.

-10-

- LEVEL II ROM REFERENCE SECTION -

TABLE 2

ARITHMETIC ROUTINES

ADDRESS OPERATION INPUT OUTPUT OUTP. TYPE

--** SINGLE-PRECISION **--

070BH ACC=(HL)+ACC ACC,(HL) ACC NTF=4, SNG
0710H ACC=(HL)-ACC ACC,(HL) ACC NTF=4, SNG
0713H ACC=BCDE-ACC ACC,BCDE ACC NTF=4, SNG
0716H ACC=BCDE+ACC ACC,BCDE ACC NTF=4, SNG
0847H ACC=BCDE*ACC ACC,BCDE ACC NTF=4, SNG
08A2H ACC=BCDE/ACC ACC,BCDE ACC NTF=4, SNG

- ** INTEGER. **-

0BC7H ACC=DE-HL DE, HL ACC,HL NTF=2, INT
0BD2H ACC=DE+HL DE, HL ACC,HL NTF=2, INT
0BF2H ACC=DE*HL DE, HL ACC,HL NTF=2, INT
2490H ACC=DE/HL DE, HL ACC,HL NTF=4, SNG

—** DOUBLE PRECISION. **—

0C70H ACC=ACC-AACC ACCjAACC ACC NTF=8,DBL
0C77H ACC=ACC+AACC ACC,AACC ACC NTF=8,DBL
0DA1H ACC=ACC*AACC ACC,AACC ACC NTF=8,DBL
0DE5H ACC=ACC/AACC ACC.AACC ACC NTF=8,DBL

Note: All registers are used.
SNG = Single precision.
INT = Integer.
DBL = Double precision.

-11-

LEVEL II ROM REFERENCE SECTION -

ARITHMETIC FUNCTIONS AND NUMBER CONVERSIONS

TABLE 3.

ADDRESS FUNCTION INPUT OUTPUT

0809H LOG (ACC) ACC,NTF=4 ACC, NTF=4
0977H & ABS (ACC) ACC,NTF=2,4 or 8 ACC, NTF=2,4 or

8
0982H $# NEG (ACC) ACC,NTF=4 or 8 ACC (Negate)
098AH SGN (ACC) ACC,NTF=2,4 or 8 ACC=-1,O,1,

NTF=2
0A7FH CINT(ACC) ACC,NTF=2,4 or 8 ACC and HL,

NTF=2
0AB1H CSNG(ACC) ACC,NTF=2,4 or 8 ACC, NTF=4
OADBH CDBL(ACC) ACC,NTF=2,4 or 8 ACC, NTF=8
0B26H * FIX (ACC) ACC,NTF=2,4 or 8 ACC, NTF=2 or 4
0B37H * INT (ACC) ACC,NTF=2,4 or 8 ACC, NTF=2 or 4
0C51H # NEG (HL) HL ACC and HL,

NTF=2
13E7H SQR (ACC) ACC,NTF=4 ACC, NTF=4
1439H EXP (ACC) ACC,NTF=4 ACC, NTF=4
14C9H RND (ACC) ACC,NTF=2,4 or 8 ACC, NTF=4
1541H COS (ACC) ACC,NTF=4 ACC, NTF=4
1547H SIN (ACC) ACC,NTF=4 ACC, NTF=4
15A8H TAN (ACC) ACC,NTF=4 ACC, NTF=4
15BDH ATN (ACC) ACC,NTF=4 ACC, NTF=4
2B05H °/ INT (ACC) ACC,NTF=2,4 or 8 DE

* If the operand is smaller than 32767 then NTF=2
$ BC and DE unchanged.
These routines change the sign of the operand.
& Remember that NTF=2 is integer, NTF=2,4 or 8 means

that the routine is suitable for integer, single and
double-precision. For the above routines, the user
must supply arguments which stay within the range
allowed by BASIC for these functions. Check too,
that the arguments have the correct number type

-12-

LEVEL II ROM REFERENCE SECTION -

TABLE 3.

ARITHMETIC FUNCTIONS AND NUMBER CONVERSIONS

(Continued)

before a particular function is called as some of
the functions do not check the NTF and errors could
result.

% The Z flag is set if the result in DE is equal to or
smaller than 255 (FFH).

-13-

LEVEL II ROM REFERENCE SECTION -

--** DATA MOVEMENT **—

This section handles the movement of data to and
from memory and ACC etc. Data moved into the ACC, AACC
and BCDE registers will be of the correct format only
if the format of the source was correct. Some of these
routines are suitable to move data from a variable
created by BASIC into the BCDE registers or ACC, so
that the data can be operated on by a machine language
program. All usable routines are shown in Table 4.

The column labelled "ADDRESS" is the call
address, the column labelled "FROM" is the source
(usually a register pair is used to point to a location
in memory) and the column labelled "TO" is the
destination. The column labelled "BYTES MOVED" shows
the number of bytes moved or the register whose value
determines the number of bytes which will be moved. If
applicable, the limits are also shown.

Finally, the column labelled "POINTERS" shows the
way in which the pointers are changed after execution,
and/or which registers are unchanged (saved) by the
operation. (N/A = not applicable).

-14-

LEVEL II ROM REFERENCE SECTION -

TABLE 4

—** DATA MOVEMENT **—

ADDRESS FROM TO BYTES MOVED POINTERS

09A4H * ACC (SP) 4 A,BC,HL saved

09B1H (HL) ACC 4 HL = HL+ 4

09B4H BCDE ACC N/A BC,HL saved

09BFH ACC BCDE N/A N/A

09C2H (HL) BCDE 4 HL = HL + 4

09CBH ACC (HL) 4 HL = HL + 4

O9CEH (DE) (HL) 4 HL = HL + 4
DE = DE + 4

09D2H (HL) (DE) NTF HL = HL + NTF
DE = DE + NTF

09D3H (DE) (HL) NTF HL = HL + NTF
DE = DE + NTF

09D6H (DE) (HL) A
A= LT 256

HL = HL + A
DE = DE + A

09D7H (DE) (HL) B
B= LT 256

HL = HL + B
DE = DE + B

09F4H AACC ACC NTF N/A

09FCH ACC AACC NTF N/A

0A9AH HL ACC N/A N/A

-15-

- LEVEL II ROM REFERENCE SECTION -

TABLE 4

—** DATA MOVEMENT **—

(Continued)

* The value is pushed on the stack, a POP BC, POP
DE can be used in succession to retrieve the
value. In case of an integer, the value will
then be in the DE reg. pair.

NOTE: ”LT" in table stands for Less Than.

-16-

LEVEL II ROM REFERENCE SECTION -

COMPARE AND TEST ROUTINES

It is often necessary to compare certain numbers
or strings with one another or to test a memory
location or register to find the type of data it
contains. For instance, while searching for a
particular number or string in memory. These types of
routines can become quite complicated if they have to
be written from scratch. This section helps by listing
all the compare routines in ROM which can be used.

In Table 5, the column "ADDRESS” is the CALL
address, the column headed "FUNCTION" shows the formula
for the function performed. Unless stated otherwise,
all registers are used however, no memory locations are
altered by the compare routines presented here.
Remember also, that a compare is a subtraction that is
actually never performed as far as the register
contents are concerned. Nevertheless the flags are set
or reset in the same way as though a subtraction had
taken place. It is for this reason that in the
FUNCTION column the operation is shown as a
subtraction.

The compare routines 1 to 5 set the Z and S flags
as though a subtraction had taken place, and load the A
reg. with 0 if the two values are equal, with 1 if a
subtraction would have resulted in a positive result
and with FFH if a subtraction would have resulted in a
negative result. Note that using compare 1 with a NTF
of 3 will result in an error. Then there is the RST 8
and the RST 10H. These are used for scanning strings.

RST 10H does the following:

1D78 23 INC HL
1D79 7E LD A,(HL) ;GET FIRST CHARACTER
1D7A FE3A CP 3AH ;IS CHARACTER NUMERIC?

-17-

- LEVEL II ROM REFERENCE SECTION -

1D7C DO RET NC RETURN IF IT IS NOT
1D7D FE20 CP 20H IS CHAR ASCII SPACE ?
1D7F CA781D JP Z.1D78H LOOP TO BYPASS SPACE
1D82 FEOB CP OBH IS IT GREATER THAN OAH
1D84 3005 JR NC,1D8BH GO FIX C FLAG.
1D86 FE09 CP 9H IS IT CONTROL CHAR ?
1D88 D2781D JP NC,1D78H LOOP TO BYPASS
1D8B FE30 CP 3 OH IS CHAR NO 0 TO 9 ?
1D8D 3F CCF C FLAG SET IF NUMERIC
1D8E 3C INC A ELSE RESET C FLAG.
1D8F 3D DEC A SET Z FLAG IF A = OOH
1D90 C9 RET RETURN WITH FLAGS SET.

This routine bypasses spaces and control
characters (vertical and horizontal tabs) and sets the
C flag if the character is numeric. The HL reg. will
point to the first non-blank character in the string.

—** RST 8 -

The RST 8 routine compares the character pointed
to by HL with the value pointed to by the two bytes on
the top of the stack (which is the return address in
this case). Care must be taken here because, if they
are unequal, a SN ERROR will be generated. If they are
equal, the return address will be incremented to bypass
the test character (which should be placed right after
the RST 8 in your programs). Before this routine
returns it will call RST 10H to find the next non-blank
character. This routine can be used to check for
certain characters and point to the next non-blank
character after execution. It must also be noted that
disk system users should CALL the actual addresses
listed in the ADDRESS column and not use the RST 8H or
RST 10H instructions.

-18-

- LEVEL II ROM REFERENCE SECTION -

--** COMPARE AND TEST ROUTINES **—

TABLE 5

NO. ADDRESS FUNCTION ROUTINE TYPE (NTF)

1 0994H SGN (ACC) * NTF=2, 4 or 8, ERROR if
NTF=3, all registers saved

2 OAOCH ACC-BCDE * NTF=4 only, all registers
saved

3 0A39H HL-DE * Twos complement, all
registers saved

4 0A4FH ACC-AACC * NTF = 8

5 0A78H AACC-ACC * NTF = 8

6 RST18
1C90H HL-DE BC, DE and HL saved,

unsigned compare.

7 RST 8H
1C96H (HL)-((SP)) BC,DE saved

8 RST 10H
1D78H (HL) BC, DE saved, C and Z flags

used HL, incremented see
text.

9 RST 20H
25D9H NTF A = NTF - 3, Z & S flags

valid, C set if NTF not
equal to 8, C is reset if
NTF =8, Z set if NTF = 3

-19-

- LEVEL II ROM REFERENCE SECTION -

TABLE 5

—** COMPARE AND TEST ROUTINES **—

(Continued)

NO. ADDRESS FUNCTION ROUTINE TYPE (NTF)

—** The following routine checks the ACC **—

ASCII letter value or rest
otherwise.

10 0955H ACC If ACC=0, Z flag is set

--** This routine checks for strings **—

11 0AF4H NTF If NTF not =3, TM ERROR,
BC,DE and HL saved

- ** Checks the char. HL is pointing to for type **—

12 1E3DH (HL) C flag set if (HL) points to

* A reg. - 0 if equal
A reg. = 1 if greater than 0
A reg. = FFH if less than 0

Note: Compare routines 1 to 6 above also set or reset
the S and Z flags.

-20-

LEVEL II ROM REFERENCE SECTION -

--** DATA CONVERSION ROUTINES **--

So far, we have discussed routines for arithmetic
and compare functions. Some functions, however, will
only work with one type of data format. Additionally,
input from the keyboard needs to be converted from
ASCII to Hexadecimal before it can be used, while the
opposite process is necessary when printing a number to
the printer or video display. This section describes
ROM routines which perform such functions.

....0000OOOO0000....

-21-

LEVEL II ROM REFERENCE SECTION -

TABLE 6.

—** CONVERSION LOGIC **—

ADDRESS INPUT OUTPUT COMMENTS

0E65H (HL) ACC,NTF=8 This routine converts an
ASCII string pointed to by
HL into a number stored in
the ACC. The string must
end with a comma or ZERO
byte. (AACC is changed).
After execution HL will
point to the last byte of
the string. (OH or ,)

0E6CH (HL) ACC This routine performs the
same function as E65H above
except that the output in
the ACC is of the smallest
NTF type possible for the
size of the number.

OFBDH ACC (HL) This routine converts a
number contained in the ACC
to an ASCII string. The
start address of the string
will be returned in the HL
register pair. The string
is terminated with a ZERO
byte. (ACC and AACC are
changed).

1E5AH (HL) DE This routine converts a
numerical ASCII string
pointed to by the HL
register pair to a BINARY
value. The result is

-22-

- LEVEL II ROM REFERENCE SECTION -

TABLE 6. CONTINUED.

--** CONVERSION LOGIC **--

ADDRESS INPUT OUTPUT COMMENTS

2BC1H (HL) A

placed in the DE register
pair. For more information
see PART 2.

The main function of this
routine is to convert a
numerical ASCII string
pointed to by HL to BINARY.
The result is placed in the
A register. For more
information see PART 2.

-23-

LEVEL II ROM REFERENCE SECTION -

—** INPUT ROUTINES **--

These routines are used to input data from the
keyboard. There are two different types of input
routines. The first type returns with one character
only, while the other allows a string of characters to
be input into an input buffer. At this stage, it is
appropriate to mention that the SYSTEM command sets the
stack pointer to 4288H which is right in the middle of
the input buffer normally used by BASIC. To overcome
this, set either the stack pointer or the buffer to a
different location in memory. The buffer can be
relocated by putting a suitable address in memory
location 40A7H which is the I/O buffer pointer.

The 361H and 1BB3H routines pass control to 41AFH
which contains a RET (C9H) instruction if Level II is
used. Disk BASIC however, uses this location to jump
to DOS code which could cause unreliable results. If
these routines are called while disk BASIC is enabled,
it is best to set 41AFH to C9H.

-24-

LEVEL II ROM REFERENCE SECTION -

TABLE 7.

CHARACTER INPUT ROUTINES. **--

ADDRESS OUTPUT

002BH REG. A

COMMENTS

This routine scans the
keyboard and returns with
the ASCII value of the key
pressed in the A register.
If no key was pressed A will
contain OH. BC and HL are
saved.

0049H REG. A

0050H REG. A

saved.

This routine is the same as
2BH above, except that it
will not return until a key
is pressed. BC and HL are

035BH REG. A

(Model 3 only) This routine
will input a character from
the RS-232 interface. It
will either wait for a
character or return if there
is no character depending on
how the "WAIT" switch was
set on initialization (see
005AH). BC and HL are saved.

This routine simulates the
INKEY$ function. The rules
for this routine are the
same as for the 2BH routine.
The ONLY difference is that
ALL registers are saved
whereas the 2BH routine
destroys the contents of the
DE register pair.

-25-

LEVEL II ROM REFERENCE SECTION -

TABLE 8.

--** STRING INPUT ROUTINES **--

ADDRESS

0040H

0361H

COMMENTS

This location jumps to 5D9H therefore the
same rules apply.

This routine inputs a string from the
keyboard and stores it at the buffer location
pointed to by the I/O buffer pointer 40A7H.
The string may be up to 240 bytes long. The
input string will be terminated with a ZERO
byte automatically, as soon as the ENTER key
is pressed. After execution, the HL register
pair will point to one byte before the start
of the string so that RST 10H can be used to
locate the first non-blank character.

05D9H

1BB3H

This routine is the most basic and the most
flexible of the INPUT routines. The HL
register pair must point to the first byte of
the input buffer, the B register must be
loaded with the maximum buffer length
required. Keyboard input over the maximum
buffer length is ignored. After pressing the
ENTER key it will return with HL containing
the original buffer address and B will
contain the actual input string length.

The function of this routine is identical to
that of the 361H routine with the exception
that it prints a question mark, before input
is accepted.

-26-

- LEVEL II ROM REFERENCE SECTION -

--** STRING OUTPUT ROUTINES **--

There are several output routines available in
ROM. Some are general purpose routines which will
output to printer, video or tape. Others will only
output to the display. The general purpose routines
invariably use the location 409CH as a flag byte to
indicate the device to which the output is to be
directed. If this location is loaded with OOH the
output will go to the video display. If it is loaded
with 01H output will be directed to the line printer,
and if it is loaded with -1 (FFH) the output goes to
tape.

The routine at 2170H can be used to set the
device type flag at 409CH to zero for video output. In
level 2 mode all registers are saved after a CALL
2170H.

-27-

- LEVEL II ROM REFERENCE SECTION -

TABLE 9.

—** SINGLE CHARACTER OUTPUT ROUTINES **—

ADDRESS COMMENTS

0033H This routine will output a byte from the A
register to the video display. BC and HL
saved.

003BH This is similar to 33H except that output
goes to the line printer. BC and HL saved.

0055H The character in the A register is output
through the RS-232 interface. (DE is used).

032AH * This routine will output a byte from the A
register to the display, printer or tape
depending on the state of the DEVICE TYPE
FLAG at 409CH. (see Part 2)

033AH This routine performs the same function as
33H, the ONLY difference is that the DE
register pair is saved. This means that ALL
the GENERAL PURPOSE registers are saved.

039CH This routine outputs a character from the A
register to the line printer, it is the same
as 3BH except that the DE register pair is
saved.

* These routines are able to output data to tape ONLY
if the correct procedure is followed for setting up
the cassette. See the tape section for more
detail.

-28-

- LEVEL II ROM REFERENCE SECTION -

TABLE 10

—** STRING OUTPUT ROUTINES **--

ADDRESS COMMENTS

021BH (Model 3 only) This routine will display a
line (string) on the crt. The string must be
terminated with a byte 03 or ODH, 03 will
leave the cursor at the next character
position after the last character printed,
and ODH (CR) will scroll the cursor to the
start of the next line. HL must point to the
string on entry, on exit HL will point the
the byte following the terminator. (DE is
used).

28A7H * This routine will output a string of data to
the display, printer or tape depending on the
contents of 409CH. The HL register pair must
point to the start of the string to be
output. The string must be terminated with a
zero byte (OOH) or a quote (22H).

2F0AH * This routine will output a string of data to
the display, printer or tape, again depending
on 409CH. The difference between 28A7H above
and this routine is that the D and B
registers play a role. The D register should
be loaded with the maximum number of
characters which should be printed. The
routine will stop when either the maximum
number of characters has been printed or if
the delimiter is reached, which should be a
ZERO byte. If the B register is set to zero
before this routine is called the B register
will reflect the actual number of characters

-29-

- LEVEL II ROM REFERENCE SECTION -

TABLE 10

—-** STRING OUTPUT ROUTINES **--

(Continued)

printed. Otherwise, it will simply be incremented by
this amount.

These routines are able to output data to tape
ONLY if the correct procedure is followed for
setting up the cassette. See the tape section for
more detail.

-30-

LEVEL II ROM REFERENCE SECTION -

—** DEMONSTRATION PROGRAM **--

The program listed below demonstrates input,
output and arithmetic routines. When this program is
executed it will print a question mark, if this is
answered with two numbers separated with a comma then
they will be multiplied and the result printed on the
screen.

010 ORG 7000H
020 START CALL 1BB3H ;INPUT X,Y
030 RST 10H ;FIND FIRST CHAR.
040 CALL 0E6CH ;PUT X VALUE IN ACC
050 PUSH HL
060 CALL 0AB1H ;CSNG
070 CALL 09BFH ;STORE IN BCDE
075 ;REGISTERS
080 EXX ;SAVE REGISTERS
090 POP HL
100 RST 8H ;CHECK FOR COMMA
110 DEFB ti ti >
120 CALL 0E6CH ;PUT Y VALUE IN ACC
130 CALL 0AB1H ;CSNG
140 EXX ;RESTORE REGISTERS
150 CALL 0847H ;MULTIPLY X AND Y
160 LD HL,BUFR
170 CALL OFBDH ;PUT RESULT IN BUFR
180 CALL 2170H ;SET DTF FOR VIDEO
190 CALL 28A7H ;PRINT RESULT
200 LD A,0DH
220 CALL 33H ;PRINT CR.
230 JR START ;DO IT AGAIN
245 BUFR DEFS 240 ;240 BYTE BUFFER
250 END START

-31-

- LEVEL II ROM REFERENCE SECTION -

—-** TAPE I/O ROUTINES **--

Using tape I/O in assembly language programs is
straight forward. All tape I/O can be handled by a
series of CALLS. Before using the tape I/O routines it
is a good idea to read the data format section to find
out how data is actually stored on tape. Also note
that the programmer will have to determine when to stop
reading from tape. The data format section can be
consulted, to find the appropriate end-of-file
pointers.

* The general purpose output routines 32AH and
28A7H can also be used to output to tape, however 212H
and 287H will have to be used to define the drive and
to write the leader as normal. Note that in the Model
3 the routine at 212H has been removed. All that 212H
does in the Model 3 is clear the A register and return.
This means that programs written for the Model 1 will
still work. The routines for reading and writing the
tape leader will automatically turn the cassette
recorder on, so the Model 3 does not have to use the
routine at 212H. For compatability, software authors,
should CALL 212H regardless of the computer system
being used.

-32-

LEVEL II ROM REFERENCE SECTION -

— DEMO TAPE I/O ROUTINE —

This is a tape I/O routine which can either read
or ’write 255 bytesi, depending on lines 60 and 70. A
CALL 264H in line 70 will write to tape and a CALL 235H
will read from tape*

10 ORG 7000H
20 START XOR A ;CLEAR A
30 CALL 212H ;DEFINE DRIVE 1
40 LD HL.5000H ;START ADDRESS
50 LD B.OFFH ;INIT LOOP COUNTER
60 LOOP LD A, (HL) ;GET BYTE
70 INC HL ;POINT TO NEXT BYTE
80 CALL 264H ;WRITE IT TO TAPE
90 DJNZ LOOP ;LOOP 255 TIMES
100 CALL 1F8H ;TURN CASSETTE OFF
110 JP 6CCH ;BACK TO BASIC
120 END START

The read routine would be identical except for lines 60
and 80 and line 65 must be inserted.

60 LOOP CALL 235H ;READ FROM TAPE
65 LD (HL),A ;PUT IT IN MEMORY

Line 80 must be deleted for the read routine.

-33-

LEVEL II ROM REFERENCE SECTION -

TABLE 11

—** TAPE I/O AND CONTROL **—

ADDRESS COMMENTS

01F8H This routine simply turns the tape recorder
off. BC, DE and HL are unchanged.

0212H This routine is used to turn the tape
recorder on. The A register should contain
OOH to turn recorder 1
recorder 2 on. BC,
(N/A to Model 3)

on
DE

or
and

FFH to turn
HL are saved.

022CH This routine
right hand

will
top

blink
corner

the asterisk in the
AF is destroyed.

Note that this routine will only function
properly if location 3C3FH contains an ASCII
blank or an asterisk. If necessary, a CALL
29FH can be used to turn both the asterisk on
when required.

0235H This routine will read a byte from tape and
return
HL are

with
saved.

it in the A register BC, DE and

0264H Writes
BC, DE

a byte
and HL

from the A
are saved.

register to tape.

0287H Writes
BC, DE

tape leader and A5H
and HL are saved.

sync byte to tape.

0296H This routine will read until the A5H sync
byte has been found. It will bypass anything
on tape until the sync byte is located
including the leader. BC, DE and HL are
saved.

-34-

- LEVEL II ROM REFERENCE SECTION -

TABLE 11

—** TAPE I/O AND CONTROL **—

(Continued)

ADDRESS COMMENTS

029FH This routine is the part of the routine at
0296H which places the two asterisks in the
top right corner of the screen when the sync
byte is found* 029FH may be called
independently of 0296H* (Model 1 only)

0314H This routine reads two bytes and returns with
them in the HL register pair*

-35-

LEVEL II ROM REFERENCE SECTION

-VARIABLE ORGANISATION AND VARIABLE LOCATING ROUTINES-

This section deals with routines which are used
to locate variables created by BASIC and one routine
which can interpret a BASIC expression and store the
result in the ACC. The routines located at 260DH and
2540H allow the passing of values from BASIC to a
machine language subroutine. The number of values that
can be passed is dependent only on the number of
variables allowed by BASIC.

These routines are quite simple to use. To use
routine 260DH for example, simply make the HL register
pair point to the first character of an ASCII string
representing the name of the variable whose value is
required, then execute a CALL 260DH. After execution,
the DE register pair will contain the address of the
variable in memory. This enables you to locate the
value in memory and operate on it. Note that if the
variable does not exist it will be created and given a
value of zero. Therefore, care must be taken to use
variables already created, because creation of a new
variable could mean that all other variables are moved
in memory and addresses already returned by the 260DH
routine will no longer be valid.

With string variables the address returned in the
DE register pair does not point to the variable
directly but to the first of three bytes containing the
string length followed by the actual string address.
The 2540H routine performs a similar function to 260DH
except that the value of the variable is placed in the
ACC and the NTF is set accordingly. For string
variables this routine will load the ACC with three
bytes containing the length and address of the string.

Finally, we come to 2337H which is a very useful
routine. It allows the user to execute BASIC
expressions during a machine language subroutine.

-36-

LEVEL II ROM REFERENCE SECTION -

Input to this routine consists of a string containing a
BASIC expression terminated (delimited) by a colon,
comma, right bracket ”)” or a zero byte. The HL
register pair should be made to point to the first
character of the expression. After execution of a CALL
2337H the result will be in the ACC and the NTF will be
set appropriately. In the case of strings the ACC will
contain the three bytes indicating string length and
string location address. It is important to note that
this routine makes considerable use of the stack and
also the machine must be in the RUN mode for it to work
as expected. All routines presented here will return
with the HL register pair pointing to the delimiter.

-37-

LEVEL II ROM REFERENCE SECTION -

* See text.

TABLE 12.

—** SPECIAL PURPOSE ROUTINES **--

ADDRESS INPUT OUTPUT

2540H * (HL) = First char. ACC, NTF, HL points to
of ASCII var. name delimiter

260DH * (HL) = First char. DE = Start address of
of ASCII var. name value of variable

2337H * (HL) = First char. ACC, NTF
of ASCII string
delimited with :,)
or ZERO byte.

29D7H This routine will make the HL register pair
point to the data in the ACC. NTF must be set
before CALLing this routine.

-38-

- LEVEL II ROM REFERENCE SECTION -

—** VARIABLE ORGANIZATION **—

This section explains the format used for
variables by BASIC* NUmeric variables are stored in
memory as follows:

NTF - This is the number type. (also length of
data)

CHR2 - Second character of variable name.
CHR1 - First character of variable name.
DATA - The data will be stored in the same format

as shown in Table 1.

String variables are somewhat different. The
data following the variable name consists of three
bytes, the first of which is the actual string length
while the second and third form the actual string
location address.

Finally, there are array variables. The data
element for these is different again. The first two
bytes after the variable name contain the size of the
array (i.e. the number of bytes used). The third byte
contains the number of dimensions used, next there
follow two bytes for each dimension in the array which
indicate the number of data elements in each. (As this
includes the zero element, the values in these bytes
are always one higher than the original DIMensioned
size). The data is arranged so that the first index
varies the fastest. In other words, if an array is
DIMensioned to be: DIM A(2,2), then the data will be
stored in the following sequence: 0,0 1,0 2,0 0,1
1,1 2,1 0,2 1,2 2,2

-39-

LEVEL II ROM REFERENCE SECTION -

--** ERROR ROUTINES **-

When writing machine language subroutines it may
be necessary at times to test for errors. After
finding an error it is often tedious to let the outside
world know that an error has occurred, not to speak of
the memory wasted by storing error messages. To
overcome this, BASIC error messages can be used. It is
for this purpose that a variety of error locations are
given in TABLE 13. To use these just jump to the
address given. The error message will be printed and
control will be passed back to the BASIC command mode.

Which brings up another related subject.
Whenever an error occurs while in the BASIC mode, a
CALL is made to location 41A6H, before the error
message is printed to the display. Normally this
location contains a RETurn instruction (C9H) which
means that it will return to whence it came, straight
away. However this location can be used to pass
control to a machine language routine used for error
trapping etc. As a matter of fact Disk Basic uses this
location to pass control to a routine that prints the
error message in full instead of the abbreviated form
that Level II uses.

-40-

- LEVEL II ROM REFERENCE SECTION -

TABLE 13

—** ERROR ROUTINES **--

ADDRESS ERROR MESSAGE TYPE.

012DH L3 ERROR (DISK BASIC ONLY)

07B2H OV ERROR (OVER FLOW)

0AF6H TM ERROR (TYPE MISMATCH)

197AH OM ERROR (OUT OF MEMORY)

1997H SN ERROR (SYNTAX ERROR)

199AH /0 ERROR (DIVIDE BY 0 ERROR)

199DH NF ERROR (NEXT WITHOUT FOR)

19A0H RW ERROR (RESUME WITHOUT ERROR)

1E4AH FC ERROR (ILLEGAL FUNCTION CALL)

1EECH RG ERROR (RETURN WITHOUT GOSUB)

2003H UE ERROR (UNDEFINED ERROR)

27EDH BS ERROR (BAD SUBSCRIPT)

2831H ID ERROR (ILLEGAL DIRECT)

28A1H ST ERROR (STRING TOO COMPLEX)

-41-

- LEVEL II ROM REFERENCE SECTION -

—** VIDEO CONTROL **--

This section handles a variety of routines
relating to control of the video display. There is a
routine to clear the screen completely, and there is a
routine to clear from a predetermined position to the
bottom of the screen. Then there are the routines to
change from 64 to 32 characters per line and vice
versa. The only routine that needs further explanation
is the clear-to-end-of-frame routine, To use this
routine, the HL register pair must be loaded with the
location from which you wish to start erasing.

Often it is necessary to clear the screen from
the cursor location onwards. To do this simply load
the HL register pair with the contents of locations
4020H and 4021H, which contain the cursor position and
CALL 57CH. (5C5H for Model 3)

-42-

- LEVEL II ROM REFERENCE SECTION -

TABLE 14.

—** VIDEO CONTROL ROUTINES **—

ADDRESS INPUT COMMENTS.

01C9H N/A Performs the CLS function

01D9H N/A (Model 3 only) This routine
dumps the screen contents to
the line printer, graphics
characters are printed as
periods (ASCII 2EH).

01DCH (HL) (Model 3 only) The screen
contents starting at the
location in screen RAM to
which HL points, are dumped
to the printer. Graphics

location (HL).

are handled in the same
as the routine above.

way

04C3H ** N/A This routine will change
display to 64 characters
line.

the
per

04F6H ** N/A This routine will change
display to 32 characters
line.

the
per

O57CH (5C5H)* HL (see text)
Clear screen to end of frame
routine. (starts at

* - Addresses in brackets are for the Model 3.
See section on System mask byte (4210H) for these
functions.

-43-

- LEVEL II ROM REFERENCE SECTION -

—** GRAPHICS **—

The graphics routines are somewhat difficult to
use. This is both because they are part of the BASIC
decoding logic and because a RST 8H is done at the end
of each routine. A dummy string can be used however,
in order to satisfy the RST 8H logic. Let us assume
that it is necessary to SET a graphic block at location
X=65 and Y=23 which is about in the middle of the
screen. In its simplest form the program would look
like this:

100
no

ORG
LD

5000H
B,65 ;LOAD X COORDINATE

120 LD A,23 ;LOAD Y COORDINATE
130 LD H,80H ;L0AD "SET" FLAG
140 CALL GRAFIX ;PUSH RET. ADDRESS
145 ;ON STACK
150 HALT ;ALL DONE.
160 GRAFIX PUSH HL ;PUSH FLAG
170 PUSH BC ;PUSH X COORDINATE
180 LD HL.188CH ;POINT HL TO DUMMY
185 ;STRING. ")+"
190 JP 150H ;JUMP TO GRAPHICS
195 ;LOGIC.
200 END

Now, let us go through this one line at a time.
The program starts with an ORG statement to tell the
assembler to start at 5000H. Next, line 110 loads the
B register with the X coordinate and line 120 loads the
A register with the Y coordinate. Line 130 loads the H
register with 80H. 80H is the flag for the SET
function. The graphics routine can perform the POINT,
SET and RESET functions, depending on the flag byte

-44-

LEVEL II ROM REFERENCE SECTION -

—** GRAPHICS **—

(Continued)

passed to it in the H register. The following flag
values can be used:

80H = SET
01H = RESET
OOH = POINT

The POINT logic will return with 0 in the ACC if
block is SET or with OFFFFH if block is RESET. Line
140 CALLs the address labelled GRAFIX. The reason we
are doing this is to place the RETurn address on the
stack. Unless we do this the, interpreter will never
return control to our subroutine.

Line 150 is at the location which was pushed on
the stack by the CALL statement in line 140. When the
interpreter has SET the graphics block it will return
here. The program will exit at line 150 *. In real
applications there would probably be a RET here instead
of a HALT, to return to the routine which would have
called our graphics routine.

Lines 160 and 170 simply PUSH the coordinates on
the stack, this must be done in the order shown. Line
180 loads the HL register pair with the address of a
dummy string which happens to be in ROM at location
188CH. It is not necessary to use the string in ROM
but it saves 2 bytes. The dummy string is needed to
satisfy the RST 8H logic which will be looking for a
closing bracket

At this point we are ready to enter the graphics
logic at 150H. All we have done so far is load
registers and push values on the stack. The reason
being that when we enter the interpreter we must fool

-45-

- LEVEL II ROM REFERENCE SECTION -

—** GRAPHICS **—

(Continued)

it in to thinking that it is executing a BASIC
statement. In other words, we must simulate the
condition the registers and the stack would be in if we
were in BASIC and bout to execute a graphics command.
As with most BASIC functions the RST 8H routine is used
to look for delimiters at the end of the function. The
graphics functions SET, RESET and POINT all have a
closing bracket at the end of them, hence the need for
a dummy string somewhere in memory, consisting of a
bracket ”)” followed by a non zero byte.

After reading this section carefully there
should be no major problems using graphics. Of course,
if a line has to be SET, then this sort of routine need
have to be put in some form of loop.

* Normally the Z80 CPU stops execution when a HALT
opcode is encountered. However the TRS-80 Model 1
is configured to cause a NMI when a HALT is
encountered. So a HALT has the same effect as
pushing the RESET button.

-46-

LEVEL II ROM REFERENCE SECTION -

--** KEYBOARD MATRIX

The keyboard is a matrix of switches which are
decoded as though they are part of the memory. The
keyboard area is located from 3800H to 3BFFH. If the
format of this matrix is known, it is quite simple to
use the keyboard for input directly rather than one of
the input routines. Sometimes, it is necessary to scan
the keyboard quickly for a particular key (like the
BREAK key) and it will be necessary to know where to
look. It is also useful to know how BASIC scans the
keyboard. Each keyboard address is read in succession.
If a non-zero value if found at any of these addresses
a key has been pressed. Each keyboard address
corresponds to a row of the keyboard, each row in turn
has a corresponding buffer location where the previous
byte read is stored. This is used for the keyboard
rollover feature. If a non-zero value is read from a
row it is exclusive or-ed with the value in the
corresponding buffer location. This means that if the
key was pressed the last time the keyboard was scanned
it will be ignored. If the keyboard buffer from 4036H
to 403CH is set to zero at regular intervals the keys
will actually repeat as long as they are depressed.

The address of the keyboard rows is shown in the
following table, on the left. The corresponding buffer
location for each row is on the right. The numbers in
brackets under the bit numbers are the values with
which to AND to find if a particular key is pressed.
For example, if location 3804H is read and the "T" key
is depressed, bit 4 would be set. To test if bit 4 is
set we can AND it with 10H. If, after ANDing with 10H,
there is a NON-zero value left then the ”T” key was
pressed. A small demo program is shown after the
table.

-47-

- LEVEL II ROM REFERENCE SECTION -

—** KEYBOARD MATRIX **—

BIT NO. 7 6 5
(20)

E

4
(10)

D

3
(08)

C

210 BUFFER
ADDRESS (80) (40) (04) (02) (01) LOCATION

3801H G F B A @ 4036H

3802H 0 N M L K J I H 4037H

3804H W V

3808H

U T S R Q P 4038H

Z Y X 4039H

3810H SQ &
7 6

%
5

$
4

#
3

" !
210 403AH

3820H ? LT
/ —

GT
J

+
J

*) (
: 9 8 403BH

3840H SPC RA

3880H

LA DA UA BRK CLS ENT 403CH

SHFT

LT = Less than symbol.
SPC = Space.

GT
RA

= Greater than symbol.
= Right arrow.

LA = Left arrow.
UA = Up arrow. (E
CLS = Clear key.
SHFT= Shift key.

(Backsp)
sc)

DA
BRK
ENT
SQ

= Down arrow. (Ctrl)
= Break key.
- Enter key. (Newline)
= Single quote.

-48-

LEVEL II ROM REFERENCE SECTION -

—** KEYBOARD MATRIX **—

(Continued)

The following
scanning. The
BREAK key.

program further demonstrates keyboard
routine checks the keyboard for the

100 LD
110
120
130 AND
140 JP
150
160

A,(3840H) ;READ FROM ROW
;CONTAINING THE BREAK
;KEY.

04H ;MASK AND SET FLAGS
NZ,.... ;JP IF BREAK KEY IS

;PRESSED.
;WILL CONT. HERE IF NOT

-49-

LEVEL II ROM REFERENCE SECTION -

—** DOS LINK ADDRESSES **—

The level 2 BASIC interpreter was written with
upward expandability in mind. Right from the start it
was decided that there would be a Disk BASIC version
with more powerful instructions than possible with the
Level 2, 12K interpreter. In order to allow for this
the Disk BASIC link areas were created. Whenever BASIC
finds a Disk BASIC command, it will jump to a unique
location in reserved RAM. When Level 2 is in command,
these locations contain jumps to the L3 ERROR routine.
Disk BASIC loads these locations with the entry points
of each individual Disk BASIC routine. The table
following shows the link addresses. The entrypoints to
the various routines in Disk Basic vary from DOS to DOS
and from Version to Version. To get a list of actual
entry points it is possible to write a small Basic
program to PEEK the link addresses and display the
contents.

-50-

LEVEL II ROM REFERENCE SECTION -

—** DISK BASIC LINK ADDRESSES **--

LINK ADDRESS COMMAND

4152H CVI
4155H FN
4158H CVS
415BH DEF
415EH CVD
4161H EOF
4164H LOC
4167H LOF
416AH MKI
416DH MKS
4170H MKD$
4173H CMD
4176H TIME$
4179H OPEN
417CH FIELD
417FH GET
4182H PUT
4185H CLOSE
4188H LOAD
418BH MERGE
418EH NAME
4191H KILL
4194H &
4197H LSET
419AH RSET
419DH INSTR
41A0H SAVE
41A3H LINE

Level 2 users can use these addresses to make the
machine jump to a machine language program.

-51-

- LEVEL II ROM REFERENCE SECTION -

—** INTERCEPT ADDRESSES **—

There are some other addresses worth mentioning.
First, there is 41A6H. As mentioned before, this
address can be used to intercept and trap errors. Then
there is 41BBH, this address can be used to intercept
the initialization routine. 400CH can be used to
intercept the BREAK key routine. 41C4H is also a very
useful interface routine, BASIC always jumps to this
address before executing a line. If this link address
is used, HL will be pointing to the start of the BASIC
program line to be processed next. The keyboard
scanning routine can be intercepted by loading location
4015H with ZERO (THIS WORKS ON MODEL 1 ONLY) and
putting a jump at 4033H to the entry point of your
machine language routine. This method can be used to
intercept characters before BASIC can respond to them.
The same effect can be achieved by loading the keyboard
driver address at 4016H-4017H with the entry point of
your routine directly. The only difference is that
location 4015H can be used as a convenient toggle to
direct keyboard control to the user and back to the
computer whenever it is desired to do so. In either
case, the first thing that must be done when your
routine takes control is to CALL the keyboard scanning
routine at 03E3H (Model 3 use 3024H). For example,
assume that we want to disable the BREAK key. The code
that the break key returns is 01H. A routine to
disable it looks like this:

-52-

LEVEL II ROM REFERENCE SECTION -

—** INTERCEPT ADDRESSES **--

(Continued)

10 ORG 4016H
20 DEFW START
60 ORG 7000H
70 START CALL 03E3H ;(3024H Model. 3)

Scan keyboard.
80 CP 01H ;Is it BREAK key?
90 RET NZ ;Carry on if not.
100 XOR A ;Clear A to ignore
110 RET ;BREAK key.
120 END

CALLing 03E3H (Model 3 use 3024H) will result in
the A register being loaded with the ASCII code of
whichever key is being pressed at the time. It is
therefore a simple matter to compare if the character
returned is the one you are looking for.

-53-

- LEVEL II ROM REFERENCE SECTION -

—** MISCELLANEOUS **--

This section handles a mixture of routines which
do not fall under any particular heading. The routines
are handled according to their location in ROM.

— TABLE 15. “

ADDRESS COMMENTS

005AH (Model 3 only) This is the routine that
initializes the RS-232 interface. (See Model
3 manual).

0069H (Model 3 only) This routine initializes all
I/O vectors, this routine can be used to undo
a device ROUTE.

006CH (Model 3 only) The I/O device routing can be
changed by using this routine. Load 4222H
with code for source device, and 4220H with
code for destination device. (Codes are two
character ASCII : KI,DO,RI,RO,PR) See part 2
for more detail.

0060H The delay loop is located here. This routine
uses the BC register pair as a loop counter
and loops until BC is decremented to zero.
The time delay is the value in the BC
register pair multiplied by 14.65 micro
seconds approx. The A register is used.
Model 3 users can use this routine to the
same effect, the clock in the Model 3 runs
faster but the routine was altered to give
the same delay.

-54-

- LEVEL II ROM REFERENCE SECTION -

— TABLE 15. --

(Continued)

ADDRESS COMMENTS

OOEFH If the HL register pair is loaded with the
desired memory size a JUMP to this location
will set all required pointers for memory
size, stack and variables.

028DH (Model 3 only) This routine scans the
keyboard and looks for the break key. If the
Z flag is NOT set then BREAK key is pressed.
(A is used)

0298H (Model 3 only) A call to this routine will
turn the CLOCK on. All registers saved
except A.

02A1H (Model 3 only) Turns the clock off. A
register used only.

02B5H A jump to this location will pass control to
the SYSTEM routine. This might be useful at
times if it is necessary to load a system
tape to memory.

O6CCH This is a good location to re-enter the BASIC
interpreter from a machine language program
(Model 3 can only use 1A19H).

1A19H This is a re-entry point for BASIC as well.
However 6CCH is recommended for the Model 1
instead as 1A19H can cause error mesages such
as OM error at times. Model 3 users can only
use 1A19H as 6CCH is removed.

-55-

- LEVEL II ROM REFERENCE MANUAL -

ADDRESS

1A76H

1AF8H

1B2CH

1B4DH

— TABLE 15. —

(Continued)

COMMENTS

This is the start of the interpreter
command mode. It prints the BASIC prompt,
and then scans the keyboard for BASIC
commands.

This routine is very useful. It will check
and repair the line pointers (if necessary)
in a BASIC program. This function is needed
after shifting or relocating lines of BASIC
program in memory, as the line pointers would
otherwise be invalid.

This routine will search a BASIC program for
the location of a BASIC statement line, the
number of which corresponds to the value in
the DE register pair. If a match is found,
the carry flag will be set and the BC
register pair will point to the start of the
line in question. HL will then point to the
next line.

A NEW without clearing the screen can be done
from a machine language routine by calling
1B4DH. This routine can also be used to
reset the BASIC program pointers to any
location in BASIC RAM. To do this load the
start of BASIC pointer (40A4H) with the new
start address and CALL 1B4DH to reset all the
pointers.

-56-

- LEVEL II ROM REFERENCE SECTION -

ADDRESS

1B5DH

1B6EH

21C9H

— TABLE 15. —

(Continued)

COMMENTS

From here you can RUN a BASIC program. To do
this use the following procedure:

LD HL,1D1EH
PUSH HL
JP 1B5DH

A CALL to this location will reset most BASIC
pointers in reserved RAM.

INPUT routine can be CALLed from here. To
use, load HL with string address and A with
the first character. For example to execute
INPUT "AMOUNT";X use the following procedure:

INPUT DEFM ""AMOUNT";X"
DEFB 0
LD HL,INPUT
LD A,(HL)
CALL 21C9H

The only other requirement is that the
variable (X in this case) must already exist.

3033H (Model 3 only) This routine will return the
date. To use this routine load HL with an 8
byte buffer address. On exit HL will contain
the start address of the buffer and the
buffer will contain the date in the folowing
format: MM/DD/YY.

-57-

- LEVEL II ROM REFERENCE SECTION -

— TABLE 15. —

(Continued)

ADDRESS COMMENTS

3036H (Model 3 only) This routine functions like
the routine at 3033H except that it returns
the time in the 8 byte buffer. Format:
HH:MM:SS.

-58-

- LEVEL II ROM REFERENCE SECTION -

—** DATA AND TAPE FORMATS **—

This section reveals the format of BASIC and
MACHINE LANGUAGE programs and data files, both in
memory and on tape. The bytes marked with an asterisk
(*) are on tape only and not in memory. This means
that the files are stored on tape in the same manner as
they appear in memory, with the exception of a leader
and some bytes at the beginning of the file or block.

— BASIC PROGRAM FORMAT —

k LEADER A leader consisting of
is found at the start of

256 zero
each file

bytes

k 0A5H 0A5H is the SYNC byte.

k D3 D3 D3 BASIC header code. This
BASIC program.

shows it is a

k NAME A one character file
here.

name i s found

LSB

MSB

LINE POINTER. Points to
program line.

start of NEXT

LSB

MSB

LINE NUMBER. The line number is
here in binary.

stored

Actual program line up to 240 bytes
long is stored here.

OOH ZERO BYTE. A zero byte signifies the
end of line.

-59-

- LEVEL II ROM REFERENCE SECTION -

— BASIC PROGRAM FORMAT —

(Continued)

A NEW LINE will start here starting
with the next line pointer — OR — the
end of program will be marked here with
two zero bytes

00 00

-60-

- LEVEL II ROM REFERENCE SECTION -

— SYSTEM TAPE FORMAT —

* LEADER

* 0A5H SYNC byte.

* 055H Header code for]
programs.

Machine Language

* NAME Six byte long ASCII file name
is less than six bytes long
padded with blanks. Although
name is six bytes long
command only looks at
character.

. If name
it will be
the file

the SYSTEM
the first

* 03CH Block header code.

* XX Block length from 1 to
256)

256 bytes. (0 =

* LSB Starting location of this block in

* MSB
memory.

Block of data located here.

* XX Checksum. The total of starting
address and all data in this block
added, with any carry ignored.

The block from 3CH onwards is repeated
until the program is complete.

* 078H END of file code.

* LSB
* MSB

ENTRY POINT of program is stored here.

-61-

- LEVEL II ROM REFERENCE SECTION -

- FORMAT OF A SOURCE FILE FROM EDTASM -

* LEADER

* 0A5H SYNC byte.

* 0D3H Start code.

* NAME Six byte long name. Names shorter that
six characters are padded with blanks.

LINE NO. The line number will be stored in ASCII
and is five bytes long. Note that
these five digits have the most
significant bit set.

2 OH Blank spacer.

•
•

ASCII coded source code stored here.

ODH Cariage return marks end of line.

Text from LINE NO. will be repeated
here OR:

1AH END of file marker.

-62-

- LEVEL II ROM REFERENCE SECTION -

— DATA FORMAT FOR FILES CREATED WITH - PRINT # —

* LEADER

* 0A5H SYNC byte.

XX Sign of data. Will be 20H if positive
or 2DH if negative.

♦
♦
•

ASCII coded data stored here.

2 OH End of field code

2CH Field separator. (ASCII for comma)

More data here OR:

ODH Carriage return marks end of data.

-63-

LEVEL II ROM REFERENCE SECTION -

-- ADDRESSES USED BY EDTASM —

At this stage it might be worthwhile to give a few
addresses which are used by EDTASM. These might come
in handy for those times when, after jumping back to
BASIC, you realize that you forgot to write the source
code to tape. (Model 1 only)

USEADDRESS

4113H
4115H
41C3H
4301H
45AAH

End of memory pointer.
Start of memory pointer.
Start of symbol table pointer.
Keyboard driver address pointer
Line printer driver.

-64-

LEVEL II ROM REFERENCE SECTION -

— INITIALIZING MACHINE LANGUAGE SUBROUTINES —

There are several important features of machine
language programs. If the SYSTEM command is used to
load and initialize a machine language program, the
stack pointer will be set right in the middle of the
area used by BASIC as the buffer (4288H). This does
not pose any problems for straight machine language
programs which do not CALL any input routines in ROM.
However, if use is made of such routines, the stack
pointer or buffer must be relocated. The buffer can be
relocated by loading the buffer pointer (40A7H) with a
new address. It is however preferable to move the
stack to a different location.

Machine language subroutines used with the USR
function do not need any special consideration other
than that the stack pointer must contain the same
address, when returning, as it did when the subroutine
was first entered. There are two options when deciding
where to place a machine language routine. It can be
placed in high memory, in which case the memory size
has to be set by the user to protect it from BASIC. Or
a machine language program can be placed in low memory,
(4300H onwards for Model 1, 4400H onwards for Model 3)
and the BASIC pointers: 40A4H, 40F9H, 40FBH and 40FDH
will have to be set a couple of bytes past the end of
your machine language program. This should be done
immediately after loading the routine to memory.

-65-

- LEVEL II ROM REFERENCE SECTION -

-- USING MACHINE LANGUAGE PROGRAMS ON DISK SYSTEMS --

The disk user is faced with some different
problems. These are caused by the way the DOS
initializes. First let me make clear that there are no
problems with straight machine language programs that
make no ROM CALLS or with machine language subroutines
used from BASIC through the USR function.

The problem stems from the fact that DOS does not
initialize the BASIC pointers, jump vectors and link
addresses which are used by many of the ROM calls
presented in this manual, until BASIC is called up by
the user. Most disk users therefore first load the
machine language program to memory and then initialize
BASIC. After that they use the SYSTEM command to jump
to the entry point of their program. This is one way
of doing things but it is tedious because the user has
to remember the entry point address in decimal for the
SYSTEM command. There is however, a better way of
initializing your machine language programs.

After some investigation it will be found that the
printer, video and keyboard control blocks are
initialized by the DOS system on power up, and are
untouched by the Disk BASIC initializing procedure when
BASIC is called up. This means that the line printer
driver address at 4026H - 4027H can be loaded with the
entry point to a machine language program. Then, after
BASIC is initialized, all that is required is to enter
LPRINT and control will be passed to the machine
language program. For those users who need to use the
line printer all that is required is to reload the
proper LPRINT driver address back into the LPRINT
driver location during initialization.

-66-

- LEVEL II ROM REFERENCE SECTION -

—** PORT 255 **—

Port 255 (OFFH) has several different applications
in the TRS-80 Model 1 (see separate section on ports
for Model 3), It is also used to set the display to 32
or 64 characters per line. The four least significant
bits in the byte sent to this port, control its
function. If an OUT (255),A is executed these bits
perform the following functions:

BIT NUMBER BIT STATUS & FUNCTION

3 If this bit is set (1) it will cause
the video display to display 32
characters per line. If it is reset
(0) then 64 characters per line will be
displayed.

2 If this bit is set the cassette
recorder will be turned on. If it is
reset the recorder will be turned off.

1 and 0 00 Writes zero voltage to tape.
01 Writes positive voltage to

tape.
10 Writes negative voltage to

tape.

To see port 255 at work try the small BASIC program
below:

10 FOR X = 1 TO 4: READ N: OUT 255, N
20 PRINT N: FOR D = 0 TO 500: NEXT
30 NEXT X: STOP
40 DATA 8,4,2,1
50 END

-67-

- LEVEL II ROM REFERENCE SECTION -

—** THE MODEL 3 SYSTEM I/O BYTE 4210H **--

Unlike the Model 1 the Model 3 uses ports for most
of its I/O. The printer, disk controller, cassette
switch and RS232 for instance are all port controlled.
Other system functions such as 32 and 64 character mode
are also port controlled. More often than not a
general purpose port is used to control several
different things. This means that each bit in the byte
output through such a port has an independend function.
For instance port ECH (236) has different functions for
5 of its bits. Bit 1 enables or disables the cassette
motor and bit 2 selects either 64 character or 32
character mode. Now, if the system wants to turn the
cassette motor on for example, it has to know if the
screen is in 32 or 64 character mode so that it can
output the correct code to port ECH so as not to change
the current display mode. In order to overcome this
problem BASIC stores the current Port ECH status (plus
some more information in bits not used by port ECH as
we will see) in a byte in reserved RAM at 4210H. BASIC
outputs the value at 4210H to port ECH at regular
intervals. So, if you want to turn the cassette relay
on for example, it is no good using port ECH directly
as BASIC will promptly turn it off again. This applies
to all the different functions of port ECH (see the
relevant section on Model 3 ports). However, if we
change the value at location 4210H (16912), BASIC will
output the changed status to port ECH for us and all is
well. Of course this only applies if BASIC is in
control. If a machine language program is in complete
control (including interrupt routines) then port ECH
can be used directly.

-68-

- LEVEL II ROM REFERENCE SECTION -

—** THE MODEL 3 SYSTEM I/O BYTE 4210H **--

— SYSTEM BYTE FUNCTION --

BIT NO.
BIT = 1

0 Clock is on.
1 Cassette motor on.
2 32 character mode.
3 Alternate character­

set enabled.
4 External (50 way) I/O

bus enabled.
5 Video waits enabled.

DESCRIPTION.
BIT = 0
Clock is off.
Cassette motor off.
64 character mode.
Alternate character­
set disabled.
External I/O bus dis­
abled.
Video waits disabled.

-69-

- LEVEL II ROM REFERENCE SECTION -

—** MODEL 3 PORT USAGE **—

The following tables are a description of all the
ports used by the Model 3.

PORT ADDRESS: EOH
ACCESS MODE: READ
Comment: This port is polled by the interrupt service

routine to see which device is interrupting.
If a bit is zero it means the device is
interrupting.

BIT NO. DEVICE.
0 Cassette 1500 baud rising edge interrupt.
1 Cassette 1500 baud falling edge interrupt.
2 Real time clock interrupt.
3 External I/O bus interrupt.
4 RS-232 Transmit interrupt.
5 RS-232 Receive interrupt.
6 RS-232 Error interrupt.
7 Undefined.

PORT ADDRESS: EOH
ACCESS MODE: WRITE
Comment: This port enables or disables the various

interrupts. Note that this port has a byte
allocated to it at address 4213H. If it is
desired to enable or disable some of the
interrupts while BASIC is in control, alter
the equivalent bit in the byte stored at
4213H. The same principles apply here as for
the system byte at 4210H described elsewhere
in this manual.

BIT NO. When bit = 0 When bit = 1
0 Disable cass. rising Enable cass. rising

edge interrupt. edge interrupt.
1 Disable cass. falling Enable same.

-70-

- LEVEL II ROM REFERENCE SECTION -

--** MODEL 3 PORT USAGE **—

(Continued)

6 Disk DRQ signal is active.
7 Disk INTRQ signal is active.

edge interrupt.
2 Disable real time Enable real-time

clock. clock.
3 Disable ext. I/O bus Enable same.
6 Disable DISK INTRQ Enable same.

from generating NMI.
7 Disable DISK DRQ from Enable same.

generating NMI.
4&5 undefined

PORT ADDRESS: E4H
ACCESS MODE: READ
BIT NO. When bit = 0

5 Reset button is down.

PORT ADDRESS: ECH
ACCESS MODE: WRITE
Comment: See section on the system mask byte at 4210H.
BIT NO. When bit = 0 When bit = 1

0 Undefined.
1 Cassette motor off.
2 64 character mode.
3 Normal character set.

4 Disable ext. I/O bus.
5 Disable video waits.
6 & 7 undefined.

PORT ADDRESS:
ACCESS MODE:
BIT NO. When bit = 0

0 Select drive 0.
1 Select drive 1.

Cassette motor on.
32 character mode.
Alternate character
set.
Enable same.
Enable same.

F4H
WRITE
When bit = 1

-71-

- LEVEL II ROM REFERENCE SECTION -

—** MODEL 3 PORT USAGE **-

(Continued)

2 Select drive 2.
3 Select drive 3.
4 Select side 0. Select side 1.
5 No write precomp. Write precompensation
6 No wait states used. Wait states used.
7 Single density (FM). Double density (MFM)

PORT ADDRESS: FFH
ACCESS MODE: READ
Comment: Reading port FFH clears the 1500 baud cassette

interrupts. Bits number 1 upto and including
5 have exactly the same function as the
corresponding bits in port ECH.

BIT NO.
0 1500 baud cassette bit.
1-5 See port ECH.
6 Undefined.
7 500 baud cassette bit.

PORT ADDRESS: FFH
ACCESS MODE: WRITE
Comment: Bits 0 to 1 have the same function as the

corresponding bits in port FFH on the Model 1.
See the Model 1 port FFH description for these
bits.

BIT NO.
0-1 Cassette output level, (see comment.)
2-7 Undefined.

-72-

- LEVEL II ROM REFERENCE SECTION -

—** MODEL 3 PORT USAGE **--

(Continued)

PORT ADDRESS:
-- READ “

F8H
— WRITE —

Line printer status.
BIT 7 = BUSY.
BIT 6 = NO PAPER.
BIT 5 = SELECT.
BIT 4 = FAULT.

ASCII out to printer.

ECH
FOR
FIR
F2H
F3H
E8H
E9H

EAR
EBH

Clear RTC interrupt.
FDC status register.
FDC track register.
FDC sector register.
FDC data register.
MODEM status.
N.A.

UART status register.
UART receiver register.

See above.
Command register (FDC)
Track register.
Sector register.
Data register.
UART reset.
Load baud rate
register.
UART control register.
UART transmit
register.

-73-

LEVEL II ROM REFERENCE SECTION -

--** THE SYSTEM 80, VIDEO GENIE, PMC-80 **-

The success of the TRS-80 has encouraged other
manufacturers to emulate it. The most widely known
TRS-80 compatible computer is manufactured in Hong Kong
and distributed throughout the world under a variety of
brand names. In Europe this computer is sold as the
Video Genie, in America as the PMC-80, in Africa as the
TRZ-80 and in Australia as the SYSTEM 80. Throughout
this manual, this computer is referred to as the SYSTEM
80.

The Model 1 routines described in this manual are
all valid for the System 80 and respond in the same way
as in a TRS-80. There are differences in the hardware
but these have been taken into account in the relevant
ROM routines. However, at times it is useful to access
the hardware directly rather than through a ROM call,
so for that purpose the hardware differences between
the TRS-80 and the System 80 are discussed below.

—** CASSETTE INTERFACE

The cassette interface on both machines uses port
FFH as its data port, with bits 0 and 1 being used to
output data to the cassette recorder (see discusion on
port FFH elsewhere in this manual). However, bit 2 is
used differently. The System 80 uses this bit to
enable data to reach the recorder. In other words bit
2 must always be held high (bit 2=1) when reading or
writing data to the cassette. This means that each
time port FFH is written to, bit 2 must be 1 if the
cassette has to stay enabled. It is also necesary to
select which recorder is to be used, internal or
external. This is done with port FEH, bit 4. Setting
bit 4 to 0 selects cassette 1 (inbuilt) and setting bit
4 to 1 selects cassette 2 (external).

-74-

- LEVEL II ROM REFERENCE SECTION -

--** THE SYSTEM 80, VIDEO GENIE, PMC-80 **--

(Continued)

—** PRINTER INTERFACE **-

The printer port in the System 80 uses port FDH
instead of memory address 37E8H. The bit usage of this
port is identical to the TRS-80 useage and should not
present any problems. To use the printer port, read
from port FDH to see if the printer is BUSY (bit 7 will
be high if printer is busy). Then output character to
port FDH.

— SYSTEM 80 CASSETTE PORT SUMMARY —

PORT FFH.
BIT NO.
0 & 1 Data output (see TRS-80

section)
port FFH

2 High = cassette on , Low =
off

cassette

7

PORT FEH
BIT NO.

Cassette data in (Read)

4 Cassette select: high = No.
No.l

2, low =

-75-

LEVEL II ROM REFERENCE SECTION -

PART 2 ****

-76-

LEVEL II ROM REFERENCE SECTION -

****** LEVEL II ROM MAP ******

LOCATION DESCRIPTION

0000-0002 Disables the interrupts, clears the A
register, then jumps to initialization
routine at 674H.

0008 (RST 8H) Jumps to 4000 through 1C96H. This
routine is used by BASIC to check for
expected delimiters. It compares the
character pointed to by the HL register pair
with the character pointed to by the return
address on the top of the stack (Note that a
RST instruction is in effect a CALL and
places a return address on the stack)
formula: (HL)=((SP))? If they are not equal
an SN ERROR will result; if they are equal
then the return address on the stack will be
incremented to bypass the test character and
control will be passed to RST 10H logic.
RST 8H can be used to look for expected
characters in a string and then return with
(HL) pointing to the next non-blank
character. (See RST 10H) (BC and DE
registers unaffected). This routine can be
used by CALLing 1C96H or RST 8H.

-77-

LEVEL II ROM REFERENCE SECTION -

LOCATION

0010

DESCRIPTION

0018

0020

(RST 10H) Jumps to 1D78H through 4003H.
This routine INCrements HL and tests the
characters pointed to by the HL register
pair. It will bypass any spaces and ASCII
codes 9 and 10 (right arrow (TAB) and down
arrow respectively). Upon return from this
routine HL will point to the next non-blank
character, the carry flag will be SET if HL
is pointing to a numeric ASCII character and
the Z flag will be SET if the character
pointed to happens to be zero or 3AH (":").
(BC and DE registers are unaffected). This
routine can be used by CALLing 1D78H or RST
10H.

(RST 18H) Jumps to 1C90H through 4006H.
This routine can be called by using RST 18H
or CALL 1C90H. It compares two 16 bit
values in HL and DE and sets the S and Z
flags accordingly (they are set in the same
way as for a normal 8 bit compare). All
registers are unchanged except for A.
Formula : HL - DE.

(RST 20H) This routine jumps to 25D9H
through 4009H. *If the NTF=8 then C=RESET or
else C=SET, Z flag will be SET if NTF=3 (S
flag is valid also). After execution of RST
20H or CALL 25D9H, A will contain the value
NTF-3, all other registers are unchanged.
(The NTF is discussed in the arithmetic
section).

0028 (RST 28H) Jumps to 400CH which contains C9H
(RET) under Level II BASIC). This vector is
only used by Disk BASIC. It is called by

-78-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

the BREAK key routine, and can be used to
intercept the BREAK key logic*

002B Keyboard scanning routine* After CALLing
2BH, the A register will contain the ASCII
value for the key that was pressed* The A
register will contain 0 if no key was
pressed at the time* Apart from the AF
register pair the DE register pair is also
used by the routine*

0030 (RST 30H) This location passes control to
400FH which contains a RET (C9H) under Level
II. This location is only used by a Disk
system, (it is used by the DEBUG utility).

0033 Character print routine. A CALL 33H will
print a character at the current cursor
position. The A register must contain the
ASCII code for the character or graphics
figure that is to be printed before CALLing
this routine. The DE register is used by
the routine.

0038 (RST 38H) This location passes control to
4012H* It is used only by a Disk system for
the real time clock interrupt service
routine.

003B Character LPRINT routine. Same as 33H but
outputs to line printer. (Contents of A
register will be printed).

0040 This location jumps to 5D9H therefore the
same rules apply here as for the 5D9H line
input routine.

-79-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

0049 Character input routine. This routine is
the same as 2BH except that it will not
return until a key is pressed, the character
is returned in the A register (AF and DE
used). This routine can be used to pause
until a key is pressed.

0050 RS-232 character input routine. (DE is used)
The character will be returned in the A
register, provided that the RS-232 port has
been initialized.

0055 RS-232 character output routine. (DE is
used) The character in the A register will
be sent, provided that the RS-232 port has
been initialized.

005A (Model 3 only) RS-232 initialization
routine. Load 41F8H, 41FAH and 41F9H with
send/receive code, wait/no wait code and
characteristics. (see Model 3 manual) Before
calling this routine.

0060 This is a delay routine. The BC register
pair is used as the loop counter. The
duration of the delay, in microseconds, is
the value of BC times 14.65. Register A is
used.

0066 This is the location to which program
control jumps when the RESET button is
pressed (Non Maskable Interrupt address).

-80-

LEVEL II ROM REFERENCE SECTION -

LOCATION

0069-0074

0069

006C

DESCRIPTION

0075

008B

(Model 1 only) This part of the
initialization checks to see if a disk drive
is connected. If so, it will jump to 0000H.
(This is why the reset
reinitialize DOS but will
MEMORY SIZE).

button will
not return to

(Model 3 only) This routine resets all I/O
drivers to their normal states.

(Model 3 only) $ROUTE routine. This routine
alows the user to "route" data from one
device to another. (i.e. keyboard to
printer instead of the screen). Load 4222H
with two character abbreviation
(KI=keyboard, DO=display, PR=printer,
RI=RS-232 input, RO=RS-232 output.) for
source and 4220H with destination device.(2
characters using ASCII code will take two
bytes. To find ASCII code for characters see
table in appendix)

(Model 1 only) This is part of the Level II
initialization procedure. Control is passed
to this section by the routine at 0696H if
there is no disk controller present. It
moves a block of memory from 18F7H to 191EH
up to 4080H to 40A7H. In other words it sets
up the reserved RAM area.

This loads 40A7H with the I/O buffer
location address 41E8H. (40A7H is the I/O
buffer pointer and can be changed to
relocate the buffer).

-81-

LEVEL II ROM REFERENCE SECTION -

DESCRIPTIONLOCATION

0091-0104 The rest of the initialization routine.
Asks MEMORY SIZE ?, sets the memory pointers
accordingly and prints RADIO SHACK LEVEL II
BASIC, it then jumps to 1A19H which is the
entry point for the BASIC command mode.

OOEF If the HL register pair is loaded with the
desired memory size a JUMP to this location
will set all required pointers for memory
size, stack and variables.

0105 The "MEMORY SIZE" message is located here.

0111 The "RADIO SHACK LEVEL II BASIC" message is
located here.

012D This is the entry point for L3 ERROR.

0132 The POINT routine starts here.

0135 The SET routine is located here.

0138 The RESET routine is here. See Part 1 for
more details on graphics.

0150 This is a suitable entry point for the
graphics routines. (See Part 1).

01C9 A CALL 1C9H will clear the screen. (CLS)

01D3 This is part of the RANDOM routine which
takes a value out of the REFRESH register,
stores it in location 40ABH and then
returns.

-82-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

01D9 (Model 3 only) Dumps screen contents to
printer.

01DC (Model 3 only) Dumps screen contents from
the screen location pointed to by HL to the
printer.

01F8 This routine will turn the cassette recorder
off.

0212 (Model 1 only, not necessary for Model 3)
CALL 212H will define which cassette is to
be used. Put OOH in the A register to turn
on cassette 1, or OFFH to turn on cassette
2. (BC, DE and HL are unchanged).

021B (Model 3 only) This routine displays a
string of ASCII data to the screen. The
string must be terminated with a byte 03 to
stop the cursor from scrolling to the start
of the next line after printing the string
or with ODH if the cursor must scroll down.

022C Blinks asterisk in top right corner. This
can be used as a subroutine. AF register
pair is used.

0235 This routine reads a byte from tape. A CALL
235H will return with the byte read from
tape in the A register BC, DE and HL are
unchanged.

0264 Writes the byte in the A register to tape.
BC, DE and HL are unchanged by a CALL 264H*

-83-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

0287 Writes tape leader and the 0A5H sync byte*
DE and HL are unchanged*

028D (Model 3 only) Scan keyboard for break key,
on return if NZ break key is down* If Z
break key is NOT down*

0296 Reads from tape until the leader is found,
then keeps going until it is bypassed and
the sync byte (A5H) is found, when it
returns. DE, BC and HL are unchanged by
this.

0298 (Model 3 only) A CALL 298H will turn the
clock on. A is used.

029F (Model 1 only) Places the double asterisks
in the right top corner to show that the
sync byte has been found.

02A1 (Model 3 only) A CALL 2A1H will turn the
clock off. A is used.

02B5 This location passes control to the routine
used by the BASIC command SYSTEM.

0314 This routine reads two bytes from tape
(providing that the tape is already running)
and puts them in the HL register pair* It
is used by the SYSTEM routine to read the
last two bytes on tape which give the entry
point* A JP (HL) can then be executed to
jump to the location specified, when used
for this purpose. Only HL is used by this
routine *

-84-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

032A This is a general purpose output routine
which outputs a byte from the A register to
video, tape or printer. In order to use it,
the location 409CH must be loaded with -1
for tape, 0 for video or 1 for the line
printer.

033A A Print routine which performs the same
function as 33H except that it does not
destroy the content of the DE register pair.
This means that all the general purpose
registers are saved, which is desirable.

035B Here is the routine to simulate the INKEY$
function. It performs exactly the same
function as 2BH but it restores all
registers, whereas 2BH destroys the contents
of the DE register pair. This makes 35BH
more useful than 2BH.

0361 This is one of the general purpose input
routines (see 5D9 and 1BB3 also). This
routine inputs a string from the keyboard up
to a maximum of 240 characters (0F0H), and
echoes them to the screen. It puts this
data into a buffer located at the address
pointed to by the buffer pointer at 40A7H
(e.g. if 40A7H contains 5000H the data will
be stored from 5000H onwards). The string is
terminated with a zero byte. The program
returns from this routine as soon as the
ENTER key has been pressed. When it does
so, HL contains the start address of the
input string. (RST 10H can be used to make
HL point to the first character of the
string, if required).

-85-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

039C This is the LPRINT routine. All registers
are saved. The byte to be printed should be
in the A register.

03E3 (Model 1 only - Model 3 use 3024H) This is
the keyboard driver. It scans the keyboard
and converts the bit pattern obtained to
ASCII and stores it in the A register.

0458 (Model 1 only - Model 3 use 473H) This is
the video driver. The character to be
displayed should be in the C register. This
routine handles scrolling etc.

04C3 (Model 1 only - Model 3 use byte at 4210H)
Changes display to 64 character mode (A
register is used.)

04F6 (Model 1 only - Model 3 use byte at 4210H)
Changes display to 32 character mode. A and
HL registers used.

057C (Model 1 only - Model 3 use 5C5H) Clear to
end of frame routine. To use this routine
load the HL register pair with the screen
address from which you want the erasing to
start. The DE and A registers are used.

058D (Model 1 only - Model 3 use 3C2H) LPRINT
driver routine, handling printer I/O etc.
The character to be printed should be in
register C.

05D9 This is the most basic of the string input
routines and is used by the two others

-86-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

(1BB3H and 0361H) as a subroutine. To use
it, load HL with the required buffer address
and the B register with the maximum buffer
length required. Keyboard input over the
specified maximum buffer length is ignored,
and after pressing the (ENTER) key it will
return with HL containing the original
buffer address and B with the string length.

0674-069E (Model 1 only) This is the start of the main
initialization routine. The interpreter
arrives at this location from 0002H, at
0696H a test is made to see if the floppy
disk controller is present if it is not the
interpreter will jump to 0075H to initialize
LEVEL II BASIC.

069F-06CB (Model 1 only)This routine will load the
BOOT/SYS program located on the DOS
diskette. The program is 255 bytes long and
is loaded to 4200H, as soon as this is done
the BOOT program will be allowed to continue
initialization to the DOS READY mode.

06CC (Model 1 only) This is an alternative
re-entry point into BASIC. A jump to 6CCH is
better than a jump to 1A19H as the latter
can cause out of memory errors (OM ERROR)
etc.

070B Single-precision addition (ACC=(HL)+ACC)
involving a buffer pointed to by the HL
register pair and the ACC (see arithmetic
section in Part 1 of this manual for
information on the ACC). This part of the
program loads the BCDE registers with the

-87-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

value from the buffer, then passes control
to 716H.

0710 Single-precision subtraction (ACC=(HL)-ACC).
This loads the BCDE registers with the value
from (HL), then passes control to 713H.

0713 Single-precision subtraction (ACC=BCDE-ACC).
The routine actually inverts the ACC and
adds it to the contents of the BCDE
registers which, in effect, is a
subtraction. The result will be stored in
the arithmetic work area (ACC).

0716 Single-precision addition (ACC=BCDE+ACC).
This routine adds two single-precision
values and stores the result in the ACC
area.

07B2 This is the OV ERROR entry point.

0809 LOG routine, (ACC=LOG (ACC)). This routine
finds the LOGarithm of the value in the ACC
area.

0847 Single-precision multiplication
(ACC=BCDE*ACC).

08A2 Single-precision division (ACC=BCDE/ACC).
If ACC=0 a " /0 ERROR " will result.

0955 Checks if ACC=0. If so, the Z flag will be
set.

-88-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

0977 ABS routine (ACC=ABS(ACC)) input and output
can be integer, single-precision or
double-precision, depending on what is
placed in the NTF (NTF=2, 4 or 8). (For a
definition of NTF, see Part 1).

0982 NEGATE function for single-precision values
(ACC=-ACC). Only BC and DE are saved.

098A SGN function (ACC=SGN(ACC)). After
execution, NTF=2 and ACC=-1, 0 or 1
depending on sign and value of ACC before
execution.

0994 This routine checks the sign of the ACC.
NTF must be set. After execution A
register=00 if ACC=0, A=01 if ACC is
greater than 0 or A=FFH if A is less than
1. The Flags are also valid.

09A4 Loads single-precision value from ACC to
stack ((SP)=ACC). To retrieve this value,
POP BC followed by POP DE. A, BC and HL are
unchanged by this function.

09B1 This routine loads four bytes from the
location pointed to by HL, into the ACC.
(ACC=(HL)).

09B4 This routine loads the ACC with the contents
of the BC and DE register pairs.
(ACC=BCDE). BC and HL remain unaltered.

09BF This routine is the opposite of the 9B4H
routine. It loads four bytes from the ACC
(single-precision) into the BC and DE

-89-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

register pairs. (BCDE=ACC). A is
unchanged.

09C2 This routine loads the BCDE register pairs
with four bytes from the location pointed to
by HL. (BCDE=(HL)). With these types of
data movements, the E register is loaded
with the LSB and the B register with the
MSB.

09CB This routine is the opposite of the 9B1H
routine. It loads four bytes from the ACC
to the memory location pointed to by HL.
((HL)=ACC).

09CE Data move routine. This moves four bytes
from the location pointed to by DE into the
location pointed to by HL. ((HL)=(DE)).

09D2 Data move routine. The location pointed to
by DE is loaded with bytes from the location
pointed to by HL. The number of bytes moved
is determined by the value in the NTF.
((DE)=(HL)).

09D3 This routine is similar to 9D2H above. The
only difference is that it moves data in the
opposite direction ((HL)=(DE)).

09D6 This routine is the same as 9D3H except that
the number of bytes moved depends on the
value in the A register ((HL)=(DE)).

09D7 This routine is the same as 9D6H except that
the number of bytes shifted is determined by
the value in the B register ((HL)=(DE)).

-90-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

09F4 This routine is used by the double-precision
logic* It moves a number of bytes (the
number depending on the value stored in the
NTF) from the AACC into the ACC.
((ACC)=(AACC)).

O9FC This is the opposite of 9F4H.
((AACC)=(ACC)).

OAOC Single-precision compare. Compares the ACC
with the contents of BCDE registers. After
execution of this routine, the A register
will contain: A=0 if ACC=BCDE, A=1 if ACC is
greater than BCDE or A=FFH if ACC is less
than BCDE.

0A39 Integer compare. Compares HL with DE.
After execution, A=0 if HL=DE, A=1 if HL is
greater than DE or A=FFH if HL is less than
DE. The S and Z flags are valid.

0A4F Double-precision compare. Compares the ACC
with the AACC. After execution the A
register will contain: A=0 if ACC=AACC, A=1
if ACC is greater than AACC or A=FFH if ACC
is less than AACC. S and Z flags are valid.

OA78 Double-precision compare. This compare is
the opposite of the A4FH compare. It
compares the AACC with the ACC. (Remember
that a compare is actually a subtraction
which is never executed, therefore a compare
can be done in two ways with the same values
(A-B and B-A)). The results are the same
as the A4FH routine.

-91-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

0A7F CINT routine. Takes a value from ACC,
converts it to an integer value and puts it
back into the ACC. On completion, the HL
register pair contains the LSB of the
integer value, and the NTF contains 2
(Integer=2). If NTF=3 (string) a TM ERROR
will be generated and control will be passed
to BASIC.

0A8A Same as 0A7F.

0A9A This is the routine that returns the value
in the HL register pair to the BASIC program
that called it. In effect, it moves the
content of HL into the ACC (ACC=HL).

0A9D Set NTF to Integer (2). (A=used).

0AB1 CSNG routine. Takes value from ACC and
converts it to single-precision. The result
is put in ACC and NTF contains 4.

OADB CDBL routine. Takes a value from ACC and
converts it to double-precision. The result
will be in ACC and NTF will be 8.

0AF4 This routine calls 20H (RST 20H) and returns
if NTF=3 (string) else if NTF is not 3 then
it generates a TM ERROR. BC, DE, and HL are
saved.

OAF6 This is the entry point for the TM ERROR.

-92-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

OAFB This routine will reset the BC and DE
register pairs if the A register contains 0.
(XOR A before calling this routine).

0B26 FIX routine. Takes a value from ACC and
converts it to an integer value. The result
will be in ACC. NTF will be 2 if value is
smaller than 32767 else it will be 4. An
error will be generated if NTF=3 (string).

0B37 Same as FIX (B26H).

0BD2 Integer addition (ACC=DE+HL). After
execution NTF=2, or 4 if overflow has
occurred, in which case the result in the
ACC will be single-precision.

OBC7 Integer subtract (ACC=DE-HL). The result
is returned in both the ACC and the HL
register pair.

0BF2 Integer multiply. (ACC=DE*HL) (rules same
as above).

0C51 Negate HL routine. This routine changes the
sign of the HL register pair and stores it
in the ACC. (HL=ACC=-HL). The result is
returned in both the HL register pair and
the ACC.

0C70 Double-precision subtraction (ACC=ACC-AACC).

OC77 Double-precision addition (ACC=ACC+AACC).

0DA1 Double-precision multiplication
(ACC=ACC*AACC).

-93-

LEVEL II ROM REFERENCE SECTION -

LOCATION DE SCRIPTION

0DE5 Double-precision division (ACC=ACC / AACC).

0E65 This routine converts an ASCII string
(pointed to by HL) to a double-precision
value and stores it in the ACC. The NTF is
fixed accordingly. The string must be
terminated with a comma or zero byte. Note

coded numeric string. The string will be in
the ACC on return.

0E6C

that the AACC
and that HL will
the end of the
must follow the s
This routine is
except that it
the smallest poss

is destroyed in the
point to the delimi
string. The string

ame rules as in BASIC
the same as 0E65H
fixes the ACC and the
ible number type.

process
ter at
formats
•
above,
NTF to

OFAF Converts the contents of HL to an ASCII

OFBD Conversion routine. Converts the value from
the ACC to an ASCII string delimited with a
zero byte. The number type can be any of
Integer, Single or Double-precision. After
execution HL will be pointing to the start
of the string. The ACC and AACC are
destroyed by the process.

13E7 SQR
routine. Single precision only. (ACC = SQR
(ACC)).

1439 EXP
routine. Single precision only. (ACC = EXP
(ACC)).

-94-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

14C9 RND routine. Integer, Single or Double
precision. Output will be single precision.
(ACC = RND (ACC)).

1541 COS routine. Single precision only. (ACC =
COS (ACC)).

1547 SIN routine. Single precision only. (ACC =
SIN (ACC)).

15A8 TAN routine. Single precision only. (ACC =
TAN (ACC)).

15BD ATN routine. Single precision only. (ACC =
ATN (ACC)).

197A OM ERROR entry point.

1997 SN ERROR entry point.

199A /0 ERROR entry point.

199D NF ERROR entry point.

19A0 RW ERROR entry point.

1A19 Re-entry point into BASIC command mode entry
point. (see 6CCH also).

1AF8 This routine fixes the line pointers in a
BASIC program. This is useful if, for
instance, you need to move BASIC program
lines in memory. A CALL 1AF8 will then
restore the line pointers. Registers A, HL
and DE are used.

-95-

LEVEL II ROM REFERENCE SECTION -

DESCRIPTIONLOCATION

1B2C This routine searches a BASIC program for a
BASIC line with a line number matching the
value in the DE register pair. Therefore,
to use this routine, the required line
number must be placed in the DE register
pair. When a match is found, this routine
sets the carry flag, the BC register pair
will be loaded with the start of the
required BASIC line, the HL register pair
points to the start of the next line. HL,
AF and BC are used.

LB49 Entry point of the NEW command.

1B4D A NEW without clearing the screen can be
done from a machine language routine by
calling 1B4DH. This routine can also be used
to reset the BASIC program pointers to any
location in BASIC RAM. To do this load the
start of BASIC pointer (40A4H) with the new
start address and CALL 1B4DH to reset all
the pointers.

1B5D From here you can RUN a BASIC program to do
this use the following procedure:

LD HLjlDlEH
PUSH HL
JP 1B5DH

1B6E A CALL to this location will reset most
BASIC pointers in reserved RAM.

1BB3 This is the last of the general purpose
input routines. This routine functions
identically to the routine at 0361H, with

-96-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

1BCO

the exception that it prints a "?” on the
screen like INPUT does with BASIC, before
allowing input from the keyboard.

This routine compresses BASIC command
strings to their tokens i.e. END would be
compressed to 80H.

1C90 The RST 18H code is located here.

1C96 The RST 8H code is located here.

1CA1 FOR entry point.

1D5A The actual BASIC interpreter is located
here. HL should be pointing to the BASIC
text to be interpreted.

1D78 The RST 10H code is located here.

1D91 RESTORE logic is located here.

1DA9 STOP entry point.

1DAE END entry point.

1DE4 CONT entry point.

1DF7 TRON entry point.

1DF8 TROFF entry point.

1E00 DEFSTR entry point.

1E03 DEFINT entry point.

-97-

LEVEL II ROM REFERENCE SECTION -

LOCATION

1E06

1E09

1E3D

1E4A

1E5A

1E7A

1EA3

1EB1

1EC2

1EDE

1EEC

DESCRIPTION

DEFSNG entry point.

DEFDBL entry point.

This routine tests the value pointed to by
the HL register pair and sets the carry flag
if it is an ASCII letter value. Otherwise it
resets the carry flag.

FD ERROR entry point.

Converts numeric ASCII string pointed to by
the HL register pair, to Hexadecimal and
places the result in the DE register pair.
After execution HL points to the delimiter
and the A register contains the delimiter
value. The Z flag is set if the delimiter =
OOH or 3AH. Z is reset if any other
delimiter is used. If there is no string at
the location pointed to by the HL register
pair the routine will return a MO ERROR
(missing operand error). If the result
exceeds OFFFFH an OV ERROR (overflow)
results.

Location of CLEAR logic.

RUN initialization logic.

GOSUB entry point.

GOTO entry point.

RETURN entry point.

RG ERROR entry point.

-98-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

1F05 DATA entry point.

1FF4 ERROR entry point.

2003 UE ERROR entry point.

2039 IF entry point.

2067 LPRINT logic.

206F PRINT
logic.

2076 PRINT @ logic.

2137 TAB logic.

2170 This routine will set the DEVICE TYPE FLAG
(409CH) to zero (video output).

2178 ?REDO message string.

219A INPUT logic.

21C9 INPUT routine can be CALLed from here. To
use load HL with string address and A with
the first character. For example to execute
INPUT "AMOUNT";X use the following
procedure:

INPUT DEFM ""AMOUNT";X"

-99-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

DEFB 0

LD HL,INPUT

LD A,(HL)

CALL 21C9H

The only other requirement is that the

21EF

2286

22B6

2337

variable (X in this case) must already
exist.

READ logic.

?EXTRA IGNORED, message string.

NEXT logic.

This routine evaluates a BASIC expression
pointed to by the HL register pair and
stores the result in the ACC. The
expression must be terminated with a zero
byte, comma, right bracket or colon. After
execution, HL will point to the delimiter
and in the case of string expressions, the
ACC Will contain the address of the first of
three bytes that contain string length and
string address. Note that the stack is used
frequently and the machine should be in RUN
mode in order to use this routine. (See
sample program in Appendix 1 for an
application of this routine).

-100-

LEVEL II ROM REFERENCE SECTION

LOCATION DESCRIPTION

2490 Integer divide. (ACC = DE / HL) The result
will be in Single precision (NTF = 4) and
will be in the ACC.

24CF ERR logic.

24DD ERL logic.

24EB VARPTR logic.

2540 This routine loads a variable to the ACC and
sets the NTF. The HL register pair must
point to the ASCII variable name. After
execution the HL register pair will point to
the character following the last character
of the variable used. The value of the
variable will be loaded in the ACC. For
strings however (NTF = 3), The ACC will
contain the address of the three bytes which
contain the string length and the actual
string address (see LEVEL II BASIC MANUAL).
Also note that if the variable cannot be
found it will be created and given a value
of zero.

25D9 The RST 20 code is located here.

25F7 OR logic.

25FD AND logic.

2608 DIM logic.

-101-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

260D This is the variable location and creation
logic. This routine returns the address of a
variable in memory or creates it if it is
not found. In order to use this routine,
the HL register pair must point to the
variable name (ASCII). Then, after
execution, HL will point to the character
following the variable name and the location
of the variable will be returned in the DE
register pair. For integer, single or
double-precision (NTF=2, 4 or 8); the
address returned in DE will be the same as
for the VARPTR command under BASIC. (See
Level II BASIC manual on VARPTR). For
strings (NTF=3) however, the address
returned in DE will point to the first of
three bytes containing the string length and
string address.

273D BS ERROR entry point.

27C9 MEM logic.

27D4 FRE logic

27F5 POS logic.

27FE USR ;Iogic.

2831 ID ERROR entry point.

2836 STR$ logic.

28A1 ST ERROR entry point.

-102-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

28A7 This is a general purpose output routine.
It will output data to the display, printer
or cassette, depending on the contents of
409CH. (0=video, -l=tape, l=printer). The
address of the first character in the string
to be output must be in the HL register
pair, and the string must end with a zero
byte or a quote (22H).

29D7 This routine sets the HL register pair to
point to the data in the ACC.

2 AO 3 LEN logic.

2A0F ASC logic.

2A1F CHR$ logic.

2A2F STRING$ logic.

2A61 LEFT$ logic.

2A91 RIGHT$ logic.

2A9A MID$ logic.

2AC5 VAL logic.

2AEF INP logic.

2AFB OUT logic.

2B01 STEP logic.

2B05 This routine takes the value from the ACC,
converts it to an integer value and places

-103-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

the result in the DE register pair. The Z
flag will be set if the result in DE is
smaller than or equal to 255 (FFH). (DE =
INT (ACC)).

2B1C This routine converts a numeric ASCII string
pointed to by the HL register pair into a
hexadecimal value and places the result in
the A register. If the result is larger
than 255 (FFH) then an FC ERROR (illegal
function call) will be generated. After
execution the HL register pair will point to
the delimiter. If the delimiter is a zero
byte or a colon (OAH) then the Z flag will
be set. Any other delimiter will cause the
Z flag to be reset.

2B29 LLIST logic.

2B2E LIST logic.

2B7E LIST routine.

2BC6 DELETE logic.

2BF5 CSAVE routine. Load HL with the address of
the program name. The program name is an
ASCII string delimited with a double quote,
(only the first letter of the program name
is used).

2C1F CLOAD logic.

2CAA PEEK logic.

2CA5 "BAD" message string.

-104-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

2CB1 POKE logic.

2CBD USING logic.

2E60 EDIT logic.

2F0A This routine will output a string of data to
the display, printer or tape, again
depending on 409CH. The difference between
28A7H above and this routine is that the D
and B registers play a role. The D register
should be loaded with the maximum number of
characters that should be printed. The
routine will stop when either the maximum
number of characters has been printed or if
the delimiter is reached which should be a
ZERO byte. If the B register is set to zero
before this routine is called the B register
will reflect the actual ammount of
characters printed. Otherwise it will simply
be incremented by this amount.

-105-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

* RESERVED RAM AND DEVICE ADDRESSES FOR THE MODEL 1 *

LOCATION USE OR COMMENTS

3000-37DD This area is set aside for future DMA
devices, there is nothing here at all* This
area can be used for custom interfaces.

37DE DOS status address. These DOS locations are
not memory but communication addresses which
communicate directly or indirectly with the
floppy disk controller IC. (For more
information on the floppy disk controller
see the FD 1771 floppy disk controller data
sheet from WESTERN DIGITAL).

37DF DOS communication data address.

37EO Interrupt latch address.

37E1 Disk drive select latch address for drive 0.

37E2 Cassette drive latch address.

37E3 Disk drive latch address for drive 1.

37E4 Cassette select address defined by 212H.

37E5 Disk drive latch address for drive 2.

37E7 Disk drive latch address for drive 3.

37E8 Line printer port address.

37EC-37EF Floppy disk controller addresses.

-106-

LEVEL II ROM REFERENCE SECTION

LOCATION DESCRIPTION

—** MODEL 1 & 3 RESERVED RAM ADDRESSES **—

(These addresses are in common between the
Model 1 and the Model 3).

3801-3880 Keyboard area. (See special section on
keyboard for more information).

3C00-3FFF Video display memory.

4000 Jump vector for RST 8H.

4003 Jump vector for RST 10H

4006 Jump vector for RST 18H

4009 Jump vector for RST 20H

400C Jump vector for RST 28H

400F Jump vector for RST 3 OH

4012 Jump vector for RST 38H

-- KEYBOARD DATA CONTROL BLOCK --

4015 Device type. (The following data for Model
1 only) If this location is loaded with zero
a jump to 4033H will occur every time the
keyboard is scanned.

4016 Driver address. The contents of this
address and the next one contains the
address to which the keyboard scanning

-107-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

401D

routine will jump each time it scans the
keyboard.

-- VIDEO DISPLAY DATA CONTROL BLOCK --

Device type.

401E Driver address.

4020 Location of cursor in video memory. (Two
byte address).

4023 Cursor character.

-- LINE PRINTER CONTROL BLOCK --

4025 Device type.

4026 Driver address. If this driver address is
changed to the driver address of the video
control block all LPRINT commands will print
to the display instead of the line printer,
and vice versa.

4028 Number of lines per page plus 1.

4029 Number of lines printed plus 1.

402B Line printer max. line length less 2.

4033 (Model 1 only) A jump to a machine language
routine can be placed here. (See section on
program intercept and 4015H).

-108-

LEVEL II ROM REFERENCE SECTION -

DESCRIPTIONLOCATION

4036-403C Small buffer for keyboard decoding routine
(used for keyboard rollover).

403D (Model 1 only) Print size flag. (0=64
characters, 8=32 characters).

4041-4046 TIME$ storage area for 25 ms counts,
seconds, minutes, hours, year, day and month
respectively.

408E Entry pointer for USR routines.

4099 INKEY$ storage.

409A Error code for RESUME.

409B Printer carriage position.

409C Device type flag (0=video, l=printer,
-l=tape).

409D Used by PRINT#.

40A0 String space pointer.

40A2 Current line being processed by BASIC.

40A4 Start of BASIC program location.

40A6 Line cursor position, used by TAB.

40A7 I/O buffer pointer.

40AA LSB of seed number for RND.

-109-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

40AB NSB (Next most Significant Byte) of seed.
(See 1D3H).

40AC MSB of seed.

4 OAF NTF this is the Number Type Flag. This
address tells BASIC the type of number which
is contained in the ACC. (2=integer,
3=string, 4=single and 8=double-precision).

40B1 Top of BASIC memory pointer. (MEM SIZE)

40B3 String work area pointer.

40B5 Usual string work area.

40D6 String space pointer (current location).

40DC Used by DIM.

40DE Used by PRINT USING.

40DF Entry point storage for SYSTEM programs.

40E1 AUTO flag (0=auto off, else auto on).

40E2 Current line number (used by AUTO).

40E4 Increment size for AUTO.

40E6 Points to the location in memory of the
BASIC program material which the interpreter
is currently processing.

40E8 Stack pointer.

-110-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

40EA Used by RESUME to store error line number.

40EC EDIT line number.

40EE Used by RESUME. Stores error line number.

40F0 Contains BASIC line number of line
containing error handler.

40F2 Error flag.

40F5 Last line executed.

40F7 Used by CONTinue.

40F9 Simple variables pointer and end of BASIC
program pointer.

40FB Array pointer.

40FD Free space pointer.

40FF Data pointer. Points to current data item.

4101-411A Variable type declaration table. 2=INT,
3=String, 4=single, 8=Double.

411B TRON flag 0=TROFF.

411D-4124 ACC (Accumulator area). See arithmetic
section for more information.

4127-412E AACC (Auxiliary Accumulator area).

4130 Line number work area pointer.

-111-

LEVEL II ROM REFERENCE SECTION

LOCATION DESCRIPTION

-- DOS COMMAND ENTRY POINT TABLE --

4152 CVI

4155 FN

4158 CVS

415B DEF

415E CVD

4161 EOF

4164 LOC

4167 LOF

416A MKS$

416D MKS$

4170 MKD$

4173 CMD

4176 TIME$

4179 OPEN

417C FIELD

;17F GET

4182 PUT

-112-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

4185 CLOSE

4188 LOAD

418B MERGE

418E NAME

4191 KILL

4194 &

4197 LSET

419A RSET

419D INSTR

41 AO SAVE

41 A3 LINE

41A6 Error intercept used by Disk BASIC to
intercept errors so that they can be printed
out in full.

41A9 Used by Disk BASIC to support its additional
USR functions.

41 AC This address is called just before READY is
displayed on screen.

41AF Intercept for the general purpose input
routine (0361H).

-113-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

41B2 This intercept address can be used to check
for encoded (compressed) BASIC commands. It
is called before the command is executed.

41B5 This location is called when the resident
BASIC program needs to be altered. For
instance if a new line is typed in, before
it is inserted in the BASIC program this
location is called.

41BB Intercept for program initialisation.

41BE This address is called after the Device type
flag at 409CH is set to 0 (i.e. video
output) by 2170H.

41C1 Intercept for general purpose output routine
(032AH).

41C4 Called when BASIC scans keyboard. INKEY$
etc.

41C7 Intercept for RUN.

41CA Called by PRINT routine, before anything is
printed.

41D6 Called before INPUT.

41D9 Used by disk BASIC to provide extra MID$
functions.

41DF Intercept for LIST, HL points to LINENUMBER,
BC to next LINEPOINTER, DE will contain
maximum line number to be listed if it has
been specified in the LIST command.

-114-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

41E2 This location is called just before the *?
prompt is printed by the SYSTEM routine.
This can be used to intercept the SYSTEM
routine after it has loaded a tape, by
putting a jump back into your routine at
this location and executing a CALL 2B5H.

41E8-42E8 I/O Buffer area.

42E9 (43E9 for Model 3) Level II BASIC programs
start here.

6A24 (Model 1 only) Disk BASIC programs start
here.

-115-

LEVEL II ROM REFERENCE SECTION -

LOCATION

3000
3003
3006
3009
300C
300F

3012
3015
3018
301B
301E
3021
3024
3027
302A
3033
3036
3042

DESCRIPTION

--** MODEL 3 EXTRA ROM ADDRESSES **--

The Model 3 has nearly 2K bytes extra ROM
added to the interpreter, this section
starting at 3000H mainly contains I/O
routines for cassette, keyboard and RS232.
Note that this section will reveal where the
cassette routines are, it is however not
recommended that these routines are used
instead of the normal cassette routines,
both for compatibillity with the Model 1 and
in case the ROMS are altered in future which
means that these routines might be
relocated.

Write leader and sync, byte (500 baud)
Write leader and sync, byte (1500 baud)
Read leader till sync byte found (500 baud)
Read leader till sync byte found (1500 baud)
Turn cassette off.
Turn cassette motor on, and wait for motor
to reach full speed.
Check if disk drive ready - then "boot".
Initialization entry (RESET).
Interrupt service routine (ISR).
Initialize RS-232.
RS-232 input routine.
RS-232 output routine.
Keyboard input routine.
$ROUTE I/O routine, (see Model 3 manual)
Handles "#" (like in PRINT #)
$DATE vector.
$TIME vector.
Set cass. routine (asks: CASS? ; then after
keyboard response sets cassette baud rate.

-116-

- LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

—** MODEL 3 EXTRA RAM ADDRESSES **—

4019 Caps lock switch. If 0 allow upper and
lowercase, if not 0 uppercase only.

401C Cursor blink switch. 0 = blink, not 0 is not
blink.

403D Interrupt vector for I/O bus interrupt.
4040 Interrupt vector for RS-232 error interrupt.
4043 Interrupt vector for undefined interrupt.
4046 Interrupt vector for real time clock.

—* MODEL 3 EXTRA DEVICE CONTROL BLOCKS

The following device control blocks have the
same basic format and purpose as, for
instance, the keyboard control block at
4015H (see 4015H). The first byte is the
device type, and the following two bytes
form the actual address of the device
drivers involved. The addresses for a
standard Model 3 are shown in brackets for
reference, these might change in future,
however.

41E5 ---- RS-232 INPUT DEVICE CONTROL BLOCK ----

41E6 RS-232 input driver address (301EH)

41E8 One byte buffer for RS-232 input.

41ED ---- RS-232 OUTPUT DEVICE CONTROL BLOCK ----

41EE RS-232 output driver address (3021H)
41F0 One byte output buffer for RS-232.

-117-

LEVEL II ROM REFERENCE SECTION -

LOCATION DESCRIPTION

41F5 ---- RS-232 INIT. DEVICE CONTROL BLOCK ----

41F6 RS-232 init. routine address (301BH)
41F8-41FA RS-232 config, bytes (see Model 3

manual)
4206 Interrupt vector for RS-232 transmit

register empty interrupt.

421D ---- ROUTE - DEVICE CONTROL BLOCK ----

421E ROUTE - address (3739H)
4209 Interrupt vector for RS-232 receive

register full interrupt.

4210 Mask byte. (see separate heading for
this byte)

4211 Cassette Baud rate switch 0=500 baud, not 0
=1500 baud.

4212 Counter for tape routines, when it has
counted down to zero will flash an asterisk
in the top right corner of the screen.

4213 Mask for port E0H.
4214 Video display scroll protect lines from 0 to

7.
4217 Time and date - 6 bytes, 1 each for :

seconds, minutes, hours, year, day, month.
4220 $ROUTE destination device, (see 6CH)
4222 $ROUTE source device (see 6CH)

-118-

APPENDIX 1

CONVERSION TABLE.

This table lists all possible values of a single
byte (0 to 255) and their respective uses in the
TRS-80. This includes all control codes (carriage
return, line feed etc.) and compression codes for BASIC
commands. The BASIC commands are stored in memory as
single byte values. The first of these for instance, is
the END statement which is stored as 80H. At times we
may want to write a machine language program which
processes lines in a BASIC program. In order to do this
we must know what the compression codes and control
codes are; this table will allow the user to find them.

Another application is when use is made of the
keyboard scanning routines. In order to make use of
these, the programmer needs to know the ASCII codes
which each key on the keyboard returns when pressed.

-119-

- APPENDIX I

BINARY HEX. DEC. COMMENTS

0000 0000 00 0 NULL
0000 0001 01 1 BREAK KEY
0000 0010 02 2
0000 0011 03 3
0000 0100 04 4
0000 0101 05 5
0000 0110 06 6
0000 0111 07 7
0000 1000 08 8 BACK SPACE (left arrow key)
0000 1001 09 9 TAB (right arrow key)
0000 1010 0A 10 LINE FEED (down arrow, CTRL)
0000 1011 OB 11
0000 1100 OC 12 FORM FEED
0000 1101 OD 13 CARRIAGE RET.(enter,

newline)
0000 1110 OE 14
0000 mi OF 15
0001 0000 10 16
0001 0001 11 17
0001 0010 12 18
0001 0011 13 19
0001 0100 14 20
0001 0101 15 21
0001 0110 16 22
0001 0111 17 23 CHANGE TO 32 CHAR. MODE
0001 1000 18 24 ERASE LINE (shift+left

arrow)
0001 1001 19 25 (shifted right arrow key)
0001 1010 1A 26 (shifted down arrow key)
0001 1011 IB 27 (shifted up arrow key)
0001 1100 IC 28 HOME CURSOR
0001 1101 ID 29
0001 1110 IE 30
0001 mi IF 31 CLEAR
0010 0000 20 32 SPACE
0010 0001 21 33 !
0010 0010 22 34 ii

-120

APPENDIX 1

BINARY HEX. DEC. COMMENTS

0010 0011 23 35 #
0010 0100 24 36 $
0010 0101 25 37 %
0010 0110 26 38 &
0010 0111 27 39 SINGLE QUOTE.
0010 1000 28 40 (
0010 1001 29 41)
0010 1010 2A 42 *
0010 1011 2B 43 +
0010 1100 2C 44 5
0010 1101 2D 45 —
0010 1110 2E 46
0010 1111 2F 47 /
0011 0000 30 48 0
0011 0001 31 49 1
0011 0010 32 50 2
0011 0011 33 51 3
0011 0100 34 52 4
0011 0101 35 53 5
0011 0110 36 54 6
0011 0111 37 55 7
0011 1000 38 56 8
0011 1001 39 57 9
0011 1010 3A 58 :
0011 1011 3B 59
0011 1100 3C 60 LESS THAN SYMBOL
0011 1101 3D 61 =
0011 1110 3E 62 GREATER THAN SYMBOL
0011 1111 3F 63 ?
0100 0000 40 64 @
0100 0001 41 65 A
0100 0010 42 66 B
0100 0011 43 67 C
0100 0100 44 68 D
0100 0101 45 69 E
0100 0110 46 70 F
0100 0111 47 71 G

-121-

- APPENDIX 1

BINARY HEX. DEC. COMMENTS

0100 1000 48 72 H
0100 1001 49 73 I
0100 1010 4A 74 J
0100 1011 4B 75 K
0100 1100 4C 76 L
0100 1101 4D 77 M
0100 1110 4E 78 N
0100 1111 4F 79 0
0101 0000 50 80 P
0101 0001 51 81 Q
0101 0010 52 82 R
0101 0011 53 83 S
0101 0100 54 84 T
0101 0101 55 85 U
0101 0110 56 86 V
0101 0111 57 87 W
0101 1000 58 88 X
0101 1001 59 89 Y
0101 1010 5A 90 Z
0101 1011 5B 91 UP ARROW CHAR.
0101 1100 5C 92 DOWN ARROW CHAR.
0101 1101 5D 93 LEFT ARROW CHAR.
0101 1110 5E 94 RIGHT ARROW CHAR
0101 mi 5F 95 CURSOR CHAR.
0110 0000 60 96 (shifted @ key)
0110 0001 61 97 a
0110 0010 62 98 b
0110 0011 63 99 c
0110 0100 64 100 d
0110 0101 65 101 e
0110 0110 66 102 f
0110 0111 67 103 g
0110 1000 68 104 h
0110 1001 69 105 i
0110 1010 6A 106 j
0110 1011 6B 107 k
0110 1100 6C 108 1

-122-

- APPENDIX 1

BINARY HEX. DEC. COMMENTS

0110 1101 6D 109 m
0110 1110 6E no n
0110 1111 6F 111 o
0111 0000 70 112 P
0111 0001 71 113 q
0111 0010 72 114 r
0111 0011 73 115 s
0111 0100 74 116 t
0111 0101 75 117 u
0111 0110 76 118 V
0111 0111 77 119 w
0111 1000 78 120 X
0111 1001 79 121 y
0111 1010 7A 122 z
0111 1011 7B 123
0111 1100 7C 124
0111 1101 7D 125
0111 1110 7E 126
0111 1111 7F 127
1000 0000 80 128 END
1000 0001 81 129 FOR
1000 0010 82 130 RESET
1000 0011 83 131 SET
1000 0100 84 132 CLS
1000 0101 85 133 CMD
1000 0110 86 134 RANDOM
1000 0111 87 135 NEXT
1000 1000 88 136 DATA
1000 1001 89 137 INPUT
1000 1010 8A 138 DIM
1000 1011 8B 139 READ
1000 1100 8C 140 LET
1000 1101 8D 141 GOTO
1000 1110 8E 142 RUN
1000 mi 8F 143 IF
1001 0000 90 144 RESTORE
1001 0001 91 145 GOSUB

-123-

- APPENDIX 1

BINARY HEX. DEC. COMMENTS

1001 0010 92 146 RETURN
1001 0011 93 147 REM
1001 0100 94 148 STOP
1001 0101 95 149 ELSE
1001 0110 96 150 TRON
1001 0111 97 151 TROFF
1001 1000 98 152 DEFSTR
1001 1001 99 153 DEFINT
1001 1010 9A 154 DEFSNG
1001 1011 9B 155 DEFDBL
1001 1100 9C 156 LINE
1001 1101 9D 157 EDIT
1001 1110 9E 158 ERROR
1001 1111 9F 159 RESUME
1010 0000 AO 160 OUT
1010 0001 Al 161 ON
1010 0010 A2 162 OPEN
1010 0011 A3 163 FIELD
1010 0100 A4 164 GET
1010 0101 A5 165 PUT
1010 0110 A6 166 CLOSE
1010 0111 A7 167 LOAD
1010 1000 A8 168 MERGE
1010 1001 A9 169 NAME
1010 1010 AA 170 KILL
1010 1011 AB 171 LSET
1010 1100 AC 172 RSET
1010 1101 AD 173 SAVE
1010 1110 AE 174 SYSTEM
1010 mi AF 175 LPRINT
1011 0000 BO 176 DEF
1011 0001 Bl 177 POKE
1011 0010 B2 178 PRINT
1011 0011 B3 179 CONT
1011 0100 B4 180 LIST
1011 0101 B5 181 LLIST
1011 0110 B6 182 DELETE

-124-

- APPENDIX 1

BINARY HEX. DEC. COMMENTS

1011 0111 B7 183 AUTO
1011 1000 B8 184 CLEAR
1011 1001 B9 185 CLOAD
1011 1010 BA 186 CSAVE
1011 1011 BB 187 NEW
1011 1100 BC 188 TAB(
1011 1101 BD 189 TO
1011 1110 BE 190 FN
1011 1111 BF 191 USING
1100 0000 CO 192 VARPTR
1100 0001 Cl 193 USR
1100 0010 C2 194 ERL
1100 0011 C3 195 ERR
1100 0100 C4 196 STRING$
1100 0101 C5 197 INSTR
1100 0110 C6 198 POINT
1100 0111 C7 199 TIME$
1100 1000 C8 200 MEM
1100 1001 C9 201 INKEY$
1100 1010 CA 202 THEN
1100 1011 CB 203 NOT
1100 1100 CC 204 STEP
1100 1101 CD 205 +
1100 1110 CE 206 —
1100 1111 CF 207 *
1101 0000 DO 208 /
1101 0001 DI 209 EXP. SIGN (up arrow, ESC)
1101 0010 D2 210 AND
1101 0011 D3 211 OR
1101 0100 D4 212 GREATER THAN
1101 0101 D5 213 =
1101 0110 D6 214 LESS THAN
1101 0111 D7 215 SGN
1101 1000 D8 216 INT
1101 1001 D9 217 ABS
1101 1010 DA 218 FRE
1101 1011 DB 219 INP

-125-

- APPENDIX 1

BINARY HEX DEC COMMENTS

1101 1100 DC 220 PCS
1101 1101 DD 221 SQR
1101 1110 DE 222 RND
1101 nn DF 223 LOG
1110 0000 EO 224 EXP
1110 0001 El 225 COS
1110 0010 E2 226 SIN
1110 0011 E3 227 TAN
1110 0100 E4 228 ATN
1110 0101 E5 229 PEEK
1110 0110 E6 230 CVI
1110 0111 E7 231 CVS
1110 1000 E8 232 CVD
1110 1001 E9 233 EOF
1110 1010 EA 234 LOC
1110 1011 EB 235 LOF
1110 1100 EC 236 MKI$
1110 1101 ED 237 MKS$
1110 1110 EE 238 MKD$
1110 1111 EF 239 CINT
1111 0000 FO 240 CSNG
1111 0001 Fl 241 CDBL
mi 0010 F2 242 FIX
mi 0011 F3 243 LEN
nn 0100 F4 244 STR$
nn 0101 F5 245 VAL
nn 0110 F6 246 ASC
nn 0111 F7 247 CHR$
nn 1000 F8 248 LEFT$
nil 1001 F9 249 RIGHT$
nn 1010 FA 250 MID$
nn 1011 FB 251 (Single Quote char - REM)
nn 1100 FC 252
nn 1101 FD 253
nn 1110 FE 254
nn 1111 FF 255

-126-

- LEVEL II ROM REFERENCE SECTION - APPENDIX 2

—** APPENDIX 2 **—

SAMPLE PROGRAM NO. 1

The program listed below shows how the DOS link
addresses can be used. It provides a new BASIC command,
the syntax of which is CMD"B,X". Where "X” is any BASIC
variable. When this command is executed, the binary
value of the variable specified will be printed to the
screen. Note that the binary value returned is in twos
complement form. Since the routine is going to be part
of the BASIC interpreter, it is reasonable to put it in
low memory and move the BASIC program pointers past it.
This is achieved by the routine labeled INIT. This part
of the routine zeroes three bytes in memory where the
start of BASIC memory is going to be and fixes the
start of BASIC pointer, variables pointer, the array
pointer and the free space pointer accordingly.
Finally, the CMD link address is loaded with the entry
point to the main program. This program finds the value
of a variable and displays it as a 16 bit binary value
to the screen. The numbers must fall in the range of a
BASIC integer value.

Although the program is not terribly useful, it
does demonstrate the principles involved. Line 170
shows the use of a CALL 2337H which evaluates the
current BASIC expression, checks for errors and places
the string part (the part between quotes) of the CMD
command in the string work area and loads the buffer
with the string length and string address. The call
29D7H does some housekeeping for BASIC and makes the HL
register pair point to the first of the three bytes
containing string length followed by string address.
Line 200 to 220 checks if the string length is zero and
generates an ILLEGAL FUNCTION CALL ERROR if it is. Line
240 to 270 gets the string address and checks if the

-127-

- LEVEL II ROM REFERENCE SECTION - APPENDIX 2

--** APPENDIX 2 **—

SAMPLE PROGRAM

(continued)

control character is a "B". The rest of the program is
straight forward, the comments show what it does. The
best way to learn how to use the ROM routines is by
experimenting with them so try some and see their
effect, use a monitor if necessary to examine memory
areas such as the ACC area and pointers.

Try the new command in the following way:

10 FOR N = 0 TO 15: CMD"B,N": PRINT: NEXT N

This will print a column of binary numbers from 0
to 15.

-128-

- LEVEL II ROM REFERENCE SECTION - APPENDIX 2 -

0010 ORG 433FH
0020 INIT LD HL,FINISH+1
0030 LD (40A4H),HL ;LOAD NEW START OF BASIC
0040 ; ADDRESS.
0050 CALL 1B4DH ; INIT ALL OTHER POINTERS
0060 LD HL,ENTRY ;GET ENTRY ADDRESS
0070 LD (4174H),HL ;FIX CMD LINK VECTOR
0080 JP 06CCH ;RETURN TO BASIC
0090 ENTRY CALL 2337H ;EVALUATE EXPRESSION
0100 PUSH HL
0110 CALL 29D7H ;GET STRING ADDRESS ETC
0120 LD A,(HL) ;GET STRING LENGTH
0130 OR A ;SET FLAGS
0140 JP Z.1E4AH ; IF ZERO FC ERROR
0150 INC HL
0160 LD E,(HL)
0170 EX DE, HL ;STRING ADDRESS IN HL
0180 LD A,(HL) ;GET FIRST CHARACTER
0190 CP "B" ;IS IT B ?
0200 JP NZ,1E4AH ;ONLY ACCEPT CMD"B"
0210 RST 10H ;FIND NEXT CHARACTER
0220 RST 8H ;IS IT A COMMA ?
0230 DEFB 11 11

i

0240 CALL 2540H ;PUT VALUE OF VAR IN ACC
0250 CALL 0A7FH ;CONVERT TO INTEGER
0260 CALL BINOUT ;DISPLAY MSB BYTE
0270 LD H,L
0280 CALL BINOUT ;DISPLAY LSB BYTE
0290 POP HL
0300 RET ;DONE !
0310 BINOUT LD B,8 ;8 BITS IN BYTE
0320 LOOP XOR A ;CLEAR A
0330 SLA H ;SHIFT BIT INTO C FLAG
0340 ADC A,30H ;ADD BIT AND CONVERT TO
0350 ; ASCII
0360 CALL 33H ;DISPLAY IT!
0370 DJNZ LOOP ;LOOP TILL 8 BITS DONE
0380 LD A,20H ;OUTPUT SPACE
0390 CALL 33H

-129-

- LEVEL II ROM REFERENCE SECTION - APPENDIX 2

0400
0405
0410
0420 END INIT

FINISH DEFW 0 ;NEW START OF BASIC

DEFW 0
;LOCATION

-130-

LEVEL II ROM REFERENCE MANUAL -

LOCATION DESCRIPTION

—** APPENDIX 3 **—

- SAMPLE PROGRAM NO.2 -

This program shows how to manipulate the BASIC
pointers and how to append code to an existing BASIC
program in memory. The program takes a block of memory
and creates a BASIC program containing DATA statements
and a FOR-NEXT loop to READ the DATA and POKE it back
into memory. This is a rather useful program as often
it is the only way to include machine code in a BASIC
program. The routine will automatically append
the new BASIC code to the end of an existing program or
create a new BASIC program if none is resident. The
routine uses quite a few ROM routines which are defined
in the LABEL DEFENITION table. This table can be
consulted to see which routines are used in this
program. The ROM reference section can then be
consulted to see how the ROM call was applied. Finally
the source code listing was assembled and created with
the MACRO-80 assembler using a MODEL II computer.
That is why the labels have colons behind them, if
EDTASM is used don°t put these colons in. The
pseudo-ops: PAGE, TITLE, SUBTTL and COMMENT should
not be used by the EDTASM user as they are not
available, these are only used to get an easy to read
listing.

The program is accessed by issuing the NAME
command. As soon as NAME is entered, the screen is
cleared and the question "START and END addresses in
HEX (START,END) ?" appears. This should be answered
with two four digit hexadecimal addresses separated
with a comma. When the "READY" prompt re-apears a new
BASIC program will be in memory, or it will be appended
to an existing program, this can be verified by LISTing
it.

-131-

DAISEN Data generator version 1.00 tor TRS-80 MACRO-80 3.4 21-Nov-80 PA6E 1

00010 TITLE DAISEN Data generator version 1.00 tor TRS-80
00020 .COMMENT!
00030
00040 uimiintmuHmmiumtmmmH
00050 tt tt
00060 It DAISEN version 1.00 for TRS-80 N1&3 tt
00070 it Created : 25/04/1982 tt
00080 it Programmer : E. R. Paay it
00090 it Copyright : InterSoft (C) it
00100 it it
oono mmimmmmmmmtmmmnu
00120
00130 This program is written to demonstrate the TRS-80 RON rails.
00140 Any given memory block can be converted to a senes of DATA
00150 statements and a F0R-NEH loop to READ the DATA statements
00160 and POKE their values back into their corresponding memory
00170 addresses by this program.
00180 ::
00190 PAGE 29

DAISEN Data generator version 1.00 for TRS-80 MACRO-80 3.4 21-Nov-80 PAGE 1-1

00200 ; -tl LABEL DEFINITIONS II-
00210 ;

1AF8 00220 REPAIR EQU 1AF8H ; Check and repair the BASIC line-pointers
OFBD 00230 HEXDEC EQU OFBDH ; Hex. to Dec conversion
0032 00240 LNLEN EQU 0050 ; Line length to use
0A9A 00250 PlfTACC EQU 0A9AH ; Put HL in ACC
0088 00260 DATA EQU 0088H ; 88H is compression code for DATA
28A7 00270 PRINT EQU 28A7H ; Print routine
409C 00280 PRTFLG EQU 409CH ; I/O device flag
0509 00290 INPUT EQU 05D9H ; INPUT routine
0010 00300 FNDCHR EQU 001 OH ; Find non blank characters
40A7 00310 BUFPTR EQU 40A7H ; I/O Buffer pointer
0008 00320 CHKCHR EQU 0008H ; Check next character
40A4 00330 STBAS EQU 40A4H ; Start of BASIC pointer
40F9 00340 ENDBAS EQU 40F9H ; End of BASIC pointer
1A19 00350 RETBAS EQU 1A19H ; Return to BASIC (Hodel 1 use 06CCH)
418E 00360 NAME EQU 418EH ; Use name command to enter routine
00C3 00370 JMP EQU 00C3H ; Opcode for JP
01C9 00380 CLS EQU 01C9H ; CLS routine
000A 00390 BUFLEN EQU 0010 ; Buffer length
OOCE 00400 MINUS EQU OOCEH ; Compression code for
1B6E 00410 RESPTR EQU 1B6EH ; Reset BASIC pointers
0005 00420 MINLNO EQU 0005 ; Minimum line number value

DATGEN Data generator version 1.00 for TRS-80 NACR0-80 3.4 21-Nov-80 PAGE 1-2

0002 00430 LNFSET EQU 0002 ; Offset for NEW linenuaber
00440
00450 SUBTTL Initialization section
00460 PA6E

DATGEN Data generator version 1.00 for TRS-80 MACRO-80 3.4 21-Nov-GO PAGE i-3
Initialization section

7E00’ 3E C3

00470
00480
00490
00500
00510
00520 INIT:

-tt

ORG
LD

INITIALIZATION SECTION tt—

DON’T FORGET TO SET NEHORY SIZE tt—

7E00H
A, JMP

; Put your ORiGin here
; Load code for JusP in A

7E02’ 21 7E0E’ 00530 LD HL,START ; Load our entry point in HL
7E05’ 32 418E 00540 LD (NAME),A ; Initialize the NAME vector
7E08’ 22 418F 00550 LD (NAME*1),HL
7E0B’ C3 1A19 00560 JP RETBAS : Initialization done?

00570 SUBTTL Main prograi area
00580 PAGE

DATGEN Data generator version 1,00 tor TRS-80
Main program area

MACRO-80 3.4 2!-Nov-80 PAGE 1-4

00590 ; —H MAIN PROGRAM SECTION tt—
00600 ;

7E0E’ 31 7DFE-’ 00610 START: LD SPJNIT-2 ; Set stackpointer
7E11’ CD O1C9 00620 CALL CLS ; Clear the screen
7E14’ AF 00630 XOR A ; Clear the A register
7E15’ 32 409C 00640 LD (PRTFLG),A ; Set I/O flag to CRT output
7E18’ 21 7F94’ 00650 LD HL.STMSGE ; Point HL to start of text
7E1B’ CD 28A7 00660 CALL PRINT ; PRINT question
7E1E’ 06 OA 00670 LD B,BUFLEN ; Limit input to 10 char’s ®ax.
7E20’ 21 7F8A’ 00680 LD HLjBUFR : Point HL to INPUT buffer
7E23’ CD 05D9 00690 CALL INPUT ; INPUT operator responce
7E26’ 2B 00700 DEC HL ; Adjust pointer for RST 10H
7E27’ D7 00710 RST FNDCHR ; Find first non blank char.
7E28’ CD 7F21’ 00720 CALL ASCHEX ; Convert START address to binary
7E2B’ ED 53 7FB8’ 00730 LD (STMEMljDE ; Save address to start fros
7E2F’ CF 00740 RST CHKCHR ; Check if next char, is a B,s
7E30’ 2C 00750 DEFB ; Place a cooa here for RST 8
7E31’ CD 7F21’ 00760 CALL ASCHEX ; Convert END address to binary
7E34’ 13 00770 INC DE ; Give it one extra
7E35’ ED 53 7F86’ 00780 LD (ENDMEM),DE ; Save end address
7E39’ B7 00790 OR A ; Make sure CY flag is reset
7E3A’ 2A 40F9 00800 LD HL,(ENDBAS) ; Check if a BASIC program is
7E3D’ ED 5B 40A4 00810 LD DE,(STBAS) ; - already resident

DATGEN Data generator version 1.00 for TRS-80 MACEO-SO 3.4 21-Nov-80
Main program area

PAGE 1-5

7E41’
7E43’

ED 52
05

00820
00830

SBC
PUSH

HL, DE
DE ; Save DE

7E44’ 11 0004 00840 LD DE, 4 ; If difference between START and
00850 : END pointers is less than 4 no
00860 ; BASIC program is resident

7E47’ B7 00870 08 A ; Make sure CY flag is reset
7E48* ED 52 00880 SBC HL, DE
7E4A’ DI 00890 POP DE ; Restore DE
7E4B’ 30 0C 00900 JR NC,SETPTR ; Jump to SETPTR if prog, resident

00910
00920 ; -tt Continues here if NO BASIC program resident it—
00930

7E4D’ 21 0005 00940 LD HL,HINLNO ; Set minimum linenumber value to use
7E50’ 22 7F82’ 00950 LD (LNUN),HL
7E53’ D5 00960 PUSH DE
7E54’ El 00970 POP HL ; Duplicate DE into HL
7E55’ E5 00980 ONTO: PUSH HL
7E56’ DI 00990 POP DE
7E57’ 18 21 01000 JR BUILD ; Start to build BASIC line

01010
01020 ; -II Continues here if a BASIC program IS resident it—
01030

7E59’ 2A 40A4 01040 SETPTR: LD HL, 1STBAS) ; First find HIGEST line num.
7E5C’ 23 01050 INC HL
7E5D’ 23 01060 NEXTLN: INC HL ; Bypass line pointer

DATGEN Data generator version 1.00 for TRS-80 HACR0-80 3.4 21-Nov-80
Hain prograa area

PAGE 1-6

7E5E’ 5E 01070 LD E,(HL) ; Get line nuaber into DE
7E5F’ 23 01080 INC HL
7E60’ 56 01090 LD D, (HL)
7E61’ 23 01100 INC HL
7E62’ 7E OHIO FNDEND: LD A,(HL) ; Find end of line
7E63’ 23 01120 INC HL
7E64’ B7 01130 OR A
7E65’ 20 FB 01140 JR NZ,FNDEND ; Find ZERO deliaiter byte

01150 ; - which signals END of line
01160
01170 ; -M Continues here if END of prograa line found H—
01180

7E67’ 7E 01190 LD A,(HL)
7E68’ 23 01200 INC HL ; Now check for a further 2
7E69’ B6 01210 OR (HL) ; - ZERO bytes which signal

01220 ; - the end of prograa
7E6A’ 20 Fl 01230 JR NZ,NEXTLN ; If not end-of-prog try next line
7E6C’ 21 0002 01240 LD HL,LNFSET ; Load offset and calculate new
7E6F’ 19 01250 ADD HL, DE ; - line nuaber
7E70’ 22 7F82’ 01260 LD (LNUM),HL ; Store new line nuaber
7E73’ 2A 40F9 01270 LD HL,(ENDBAS) ; Coapute where to start our
7E76’ 2B 01280 DEC HL ; - BASIC prograa
7E77* 2B 01290 DEC HL
7E78’ 18 DB 01300 JR CNTO

01310

DATGEN Data generator version 1.00 for IRS-80
Main program area

NACR0-80 3.4 21-Nov-80 PAGE 1-7

01320 -ll Continues here when iill parameters have been it—
01330 J -tl computed to allow us to “BUILD8 a BASIC program tt-
01340

7E7A’ 2A 7F88’ 01350 BUILD: LD HL,(STMEM) ; Point to memory block
7E7D’ 06 32 01360 BNXTLN: LD B,LNLEN : Maximum NO of DATA items
7E7F’ 3E FF 01370 LD A,0FFH ; Put filler in temp, linepointer
7E81’ 12 01380 LD IDE),A
7E82’ 13 01390 INC DE
7E83’ 12 01400 LD (DE),A
7E84’ 13 01410 INC DE
7E85’ E5 01420 PUSH HL Save HL
7E86’ 2A 7F82’ 01430 LD HLJLNUH) ; Get OLD linenumber
7E89’ 23 01440 INC HL ; Calculate NEN
7E8A’ 22 7F82’ 01450 LD (LNUH)jHL
7E8D’ EB 01460 EX DE, HL
7E8E’ 73 01470 LD (HL),E ; INSERT linenumber
7E8F’ 23 01480 INC HL
7E90’ 72 01490 LD (HL),D
7E91’ 23 01500 INC HL
7E92' 3E 88 01510 LD A,DATA ; INSERT code for “DATA8
7E94’ 77 01520 LD (HL),A
7E95’ 23 01530 INC HL
7E96’ EB 01540 EX DE, HL
7E97’ El 01550 POP HL ; Restore HL
7E98’ 7E 01560 SETBYT: LD A,(HL) ; Get a byte from memory block

DATGEN Data generator version 1.00 for TRS-80 HACR0-80 3.4 21-Nov-80
Hain prograa area

PAGE 1-8

7E99* 23 01570 INC HL
7E9A’ E5 01580 PUSH HL ; Save aeanry pointer
7E9B’ f>F 01590 LD L,A
7E9C’ 26 00 01600 LD H,0 ; Prepare for Binary to Decimal

01610 ; - conversion
7E9E’ CD 0A9A 01620 CALL PUTACC ; Put value in ACC
7EA1’ CD 7F7A’ 01630 CALL HEXASC ; Convert BIN. to ASCII decimal
7EA4’ 2B 01640 DEC HL ; HL points to ASCII string
7EA5’ D7 01650 RST FNDCHR ; Find first character
7EA6’ 7E 01660 L00P1: LD A,(HL) ; Get a character
7EA7’ 23 01670 INC HL
7EA8’ B7 01680 OR A
7EA9’ 28 04 01690 JR Z,EXIT1 ; Delimiter ?
7EAB' 12 01700 LD (DE),A ; Insert data in prograa line
7EAC’ 13 01710 INC DE
7EAD’ 18 F7 01720 JR L00P1 ; Loop till done
7EAF’ El 01730 EXIT!: POP HL ; Get aeaory pointer
7EB0’ E5 01740 PUSH HL
7EB1’ 78 01750 LD A,B
7EB2’ ED 4B 7F86’ 01760 LD BC,(ENDMEM)
7EB6’ B7 01770 OR A ; Reset CY flag
7EB7’ ED 42 01780 SBC HL,BC
7EB9’ 47 01790 LD B, A
7EBA’ El 01800 POP HL
7EBB’ 30 OC 01810 JR NC,FINISH ; Check if all aeaory block done

DATGEN Data generator version 1.00 for TRS-80 NACR0-80 3.4 21-Nov-80 PAGE 1-9
Main progras area

7EBD’ 3E 2C 01820 ID A,V ; Separate DATA entry’s with a coaaa
7EBF’ 12 01830 LD (DE),A ; Insert tew
7EC0’ 13 01840 INC DE
7EC1’ 10 D5 01850 DJNZ SETBYT : Loop tn till 1 program line
7EC3’ AF 01860 XOR A
7EC4’ IB 01870 DEC DE : Erase last comsa
7EC5’ 12 01880 LD (DE),A ; Insert END of line deli alter
7EC6’ 13 01890 INC DE
7EC7’ 18 B4 01900 JR BNXTLN ; "BUILD" ri*ext line
7EC9’ AF 01910 FINISH: XOR A
7ECA’ 12 01920 LD (DE),A ; Insert end of line delimiter
7ECB’ 13 01930 INC DE
7ECC’ 30 01940 INC A
7ECD’ 12 01950 LD (DE),A ; Insert dummy line-pointer
7ECE’ 13 01960 INC DE
7ECF’ 12 01970 LD (DE),A
7ED0’ 13 01980 INC DE
7ED1’ 2A 7F82? 01990 LD HL,(LNUM) : Set next line number
7ED4’ 23 02000 INC HL
7ED5’ 23 02010 INC HL
7ED6’ EB 02020 EX DE, HL
7ED7’ 77 02030 LD (HL),E ; Insert linenumber
7ED8’ 23 02040 INC HL
7ED9’ 72 02050 LD (HL),D
7EDA’ 23 02060 INC HL

DATGEN Data generator version 1,00 for TRS-80 MACRO-80 3.4 21-Nov-80 PAGE MO
Main prograa area

7EDB’ EB 02070 EX DE, HL
7EDC’ 2A 7F88’ 02080 LD HL,(STMEM) : Get start of aeaory block address
7EDF’ CD 0A9A 02090 CALL PUTACC ; Put it in ACC
7EE2’ CD 7F7A’ 02100 CALL HEXASC
7EE5’ D5 02110 PUSH DE
7EE6’ 11 7FCE’ 02120 LD DE,SRTVAL : Point DE to aodel BASIC line
7EE9* CD 7F61’ 02130 CALL INSERT ; Insert START address into FOR-NEXT

02140 ; - loop
7EEC’ 2A 7F86’ 02150 LD HL,(ENDNEM) ; Get end of aeaory block address
7EEF’ 2B 02160 DEC HL
7EF0’ CD 0A9A 02170 CALL PUTACC ; Put it in ACC
7EF3’ CD 7F7A’ 02180 CALL HEXASC : Convert it to ASCII decimal string
7EF6’ 11 7FD5’ 02190 LD DE,ENDVAL ; Point DE to FOR/NEXT loop
7EF9’ CD 7F61’ 02200 CALL INSERT ; Insert secon value in FOR/NEXT loop
7EFC’ DI 02210 POP DE
7EFD’ 21 7FCA’ 02220 LD HL,PROGRM : Point HL to aodel BASIC line
7F00’ 7E 02230 L00P3: LD A, (HL) ; Put model BASIC line in our

02240 ; - actual BASIC prograa
7F01’ 23 02250 INC HL
7F02’ B7 02260 OR A
7F03’ 28 08 02270 JR 2,DONE
7F05’ FE 20 02280 CP J ? ; Ignore spaces
7F07’ 28 F7 02290 JR Z,L00P3
7F09’ 12 02300 LD (DE),A
7F0A’ 13 02310 INC DE

DATGEN Data generator version 1.00 tor TRS-80 MACRO-80 3.4 21-Nov-80 PAGE 1-11
Main program area

02470 SUBTIL Subroutine section
02480 PAGE

7F0B’ IB F3 02320 JR L00P3
7F0D’ AF 02330 DONE: XOR A
7F0E’ 06 03 02340 LD B,3
7F10’ 12 02350 L00P4: LD (DE),A ; Insert END-OF-PROGRAM marker
7F11’ 13 02360 INC DE
7F12’ 10 FC 02370 DJNZ L00P4
7F14’ ED 53 40F9 02380 LD (ENDBAS),DE ; Adjust BASIC pointers
7F18’ CD 1B6E 02390 CALL RESPTR ; Reset reserved RAM pointers
7F1B’ CD 1AF8 02400 CALL REPAIR ; Adjust dummy linepointers to

02410 ; - their real values
02420
02430 ; -It ALL DONE H ? - Ne have now created a BASIC 11—
02440 ; -n program that will read back a block of aeaorytt—
02450

7F1E’ C3 1A19 02460 jp RETBAS ; Exit to BASIC READY mode

DATGEN Data generator version 1.00 for TRS-80 MACRO-BO 3.4 21-Nov-80 PAGE 1-12
Subroutine section

02490 ; —tt SUBROUTINE SECTION It—
02500

7F21' CD 7F2A’ 02510 ASCHEX: CALL CONBYT ; Convert ASCII-Hex. to BINARY
7F24’ 57 02520 LD D,A ; - result is in DE
7F25’ CD 7F2A’ 02530 CALL CONBYT
7F28’ 5F 02540 LD E,A
7F29’ C9 02550 RET

02560
7F2A’ CD 7F39’ 02570 CONBYT: CALL FETCH ; Get an ASCII character
7F2D’ CD 7F50’ 02580 CALL CONV
7F30’ 5F 02590 LD E,A
7F31’ CD 7F39’ 02600 CALL FETCH
7F34’ CD 7F54’ 02610 CALL C0NV1
7F37’ 83 02620 DR E
7F38’ C9 02630 RET

02640
7F39’ 7E 02650 FETCH: LD A,(HL)
7F3A’ 23 02660 INC HL ; Get char
7F3B’ FE 30 02670 CP ’0’ ; Allow only VALID hex. characters
7F3D’ 38 OE 02680 JR C,ERROR
7F3F’ FE 3A 02690 CP ? ■ f

7F41’ 30 01 02700 JR NCjFTl
7F43’ C9 02710 RET

DATGEN Data generator version 1.00 for TRS-80 HACR0-80 3.4 21-Nov-80
Subroutine section

PAGE 1-13

7F44’ FE 41 02720 FT1: CP 7 A7
7F46’ 38 05 02730 JR C,ERROR
7F48’ FE 47 02740 CP 7G7
7F4A’ 30 01 02750 JR NO,ERROR
7F4C’ C9 02760 RET

02770
7F4D’ C3 7E0E’ 02780 ERROR: JP START ; If BAD entry start all over again

02790
7F50' 01 7F5C’ 02800 CONV: LD BO,SHIFT
7F53’ C5 02810 PUSH BC ; Put new RETurn address on stack
7F54’ 06 30 02820 C0NV1: SUB 30H
7F56’ FE OA 02830 CP OAH
7F58’ 08 02840 RET C
7F59’ 06 07 02850 SUB 7
7F5B’ C9 02860 RET

02870
7F5C’ OF 02880 SHIFT: RRCA
7F5D’ OF 02890 RRCA
7F5E’ OF 02900 RRCA
7F5F’ OF 02910 RRCA
7F60’ C9 02920 RET

02930
7F61’ 06 06 02940 INSERT: LD By 6
7F63’ 7E 02950 L00P2: LD A,(HL) ; Insert 6 characters
7F64’ 23 02960 INC HL

DATGEN Data generator version 1.00 for TRS-80 MACRO-80 3.4 21-Nov-80
Subroutine section

PAGE 1-14

7F65’ 87 02970 OR A
7F66’ 28 08 02980 JR Z,FILLER
7F68’ FE 2D 02990 CP ; Negative nuaber ?
7F6A’ 20 02 03000 JR NZ,CNT1
7F6C’ 3E CE 03010 LD A,MINUS ; If negative put correct BASIC code
7F6E’ 12 03020 CNT1: LD (DE),A
7F6F’ 13 03030 INC DE
7F70’ 10 Fl 03040 DJNZ L00P2
7F72’ C9 03050 RET
7F73’ 3E 20 03060 FILLER: LD A,’ ’ ; Pad with blanks
7F75* 12 03070 LD (DE),A
7F76’ 13 03080 INC DE
7F77’ 10 FA 03090 DJNZ FILLER
7F79’ C9 03100 RET

03110
7F7A’ C5 03120 HEXASC: PUSH BC
7F7B’ D5 03130 PUSH DE
7F7C’ CD OFBD 03140 CALL HEXDEC
7F7F' DI 03150 POP DE
7F80’ Cl 03160 POP BC
7F81’ C9 03170 RET

03180
03190 SUBTTL Data buffer and storage section
03200 PAGE

DAISEN Data generator version 1.00 for TRS-80 MACRO-BO 3.4 21-Nov-SO PAGE 1-15
Data buffer and storage section

7F82’ 0000

03210
03220
03230 LNL'M:

-H DATA STORAGE SECTION M--

DEFW 0
7F84’ 0000 03240 LPOINT: DEFW 0
7F86’ 0000 03250 ENDMEM: DEFW 0
7F88’ 0000 03260 STMEM: DEFW 0
7F8A’ 03270 BUFR: DEFS BUFLEN
7F94’ 09 53 54 41 03280 STMSSE: DEFN f START and END addresses in HEX
7F98’ 52 54 20 61
7F9C’ 6E 64 20 45
7FA0’ 4E 44 20 61
7FA4’ 64 64 72 65
7FAS’ 73 73 65 73
7FAC’ 20 69 6E 20
7FB0’ 48 45 58 20
7FB4* 28 53 54 41 03290 DEFM ?(START,END) ?’
7FB8’ 52 54 2C 45
7FBC’ 4E 44 29 20
7FC0’ 3F
7FC1’ ODOD 03300 DEFW ODODH
7FC3’ 20 20 20 20 03310 DEFM ; 6 SPACES
7FC7’ 20 20
7FC9’ 00 03320 DEFB 0

DATGEN Data generator version 1.00 for TRS-80 NACR0-80 3.4 21-Nov-80 PAGE 1-16
Data buffer and storage section

7FCA’ 81 03330 PROGRM: DEFB 81H
7FCB’ 58 58 03340 DEFM ’XX’
7FCD’ 05 03350 DEFB 0D5H
7FCE’ 20 20 20 20 03360 SRTVAL: DEFM J ?

7FD2’ 20 20
7FD4’ BD 03370 DEFB OBDH

7FD5’ 20 20 20 20 03380 ENDVAL: DEFM

7FD9’ 20 20 3A
7FDC’ 8B 03390 DEFB 8BH

7FDD’ 59 59 3A 03400 DEFM ’YY:’

7FE0’ Bl 03410 DEFB 0B1H

7FE1’ 58 58 2C 59 03420 DEFM 'XX,YY:’

7FE5’ 59 3A
7FE7’ 87 03430 DEFB 87H
7FE8’ 58 58 03440 DEFM ’XX’
7FEA’ 00 03450 DEFB 0

03460 END INIT

DATGEN Data generator version 1.00 for TRS-80 MACRO-80 3.4 21-Nov-80
Data buffer and storage section

PAGE S

Macros:

Symbols:
ASCHEX 7F21’ BNXTLN 7E7D’ BUFLEN OOOA BUFPTR 40A7
BUFR 7F8A’ BUILD 7E7A’ CHKCHR 0008 CLS 01C9
CNTO 7E55? CNT1 7F6E! CDNBYT 7F2A’ CONV 7F50’
C0NV1 7F54’ DATA 0088 DONE 7F0D’ ENDBAS 40F9
ENDHEM 7F86? ENDVAL 7FD5’ ERROR 7F4D’ EXIT! 7EAF7
FETCH 7F39? FILLER 7F73’ FINISH 7EC9! FNDCHR 0010
FNDEND 7E62’ FT! 7F44’ GETBYT 7E98’ HEXASC 7F7A?
HEXDEC OFBD INIT 7E00’ INPUT 05D9 INSERT 7F61’
JMP 00C3 LNFSET 0002 LNLEN 0032 LNUM 7F82J
L00P1 7EA6’ L00P2 7F63’ L00P3 7F00-' L00P4 7F10?
LP01NT 7F847 MINLNO 0005 MINUS OOCE NAME 418E
NEXTLN 7E5D? PRINT 28A7 PROGRM 7FCA’ PRTFLG 409C
PUTACC 0A9A REPAIR 1AF8 RESPTR 1B6E RETBAS 1A19
SETPTR 7E597 SHIFT 7F5C’ SRTVAL 7FCE’ START 7E0E?
STBAS 40A4 STMEM 7F88’ STMSGE 7F94’

No Fatal error(s)

-k'k'k-k PART 3 ****

DBUG VERSION 1.00 FOR THE TRS-80 MODEL I or III

Feb 8, 1982

BY EDWIN R. PAAY.

(C) COPYRIGHT INTERSOFT, ALL RIGHTS RESERVED.

DBUG - SYMBOLIC DEBUGGER -- USER MANUAL -- April 26, 1982

**** IMPORTANT NOTICE ****

InterSoft or its distributors shall have no
liability or responsibility to any person or entity
with respect to any liability, loss or damage caused or
alleged to be caused directly or indirectly by programs
sold by InterSoft or its distributors including but not
limited to any interruption of service, loss of
business or anticipatory profits or consequencial
damages resulting from the use or operation of such
computer programs.

DISTRIBUTED BY MICRO-80 PRODUCTS
433 MORPHETT STREET, ADELAIDE 5000

PH. (08) 211 7244.

(1) . TRSDOS is a trademark of the Tandy
corporation.

(2) . ZBUG is produced by Microsoft.

D-2

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

-FOREWORD-

This utility program is provided to make this a
complete ASSEMBLY LANGUAGE package for the TRS-80. The
ROM REFERENCE section describes where USEFUL subroutine
calls are located and the DBUG program allows us to
debug machine language programs on the TRS-80. This
allows the user to try the ROM subroutines set out in
the ROM reference manual while in debug mode and
actually see registers, memory and/or screen change in
response to the subroutines. I feel that the DBUG
utility will make writing and debugging assembly
language programs much simpler than ever before. I
hope that you will feel the same. Happy debugging !

Edwin R. Paay

D-3

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

*** index ***

•k'k'k'k'k'k

Subject. Page

Foreword
Introduction
The work display
Command list
Quick reference table
Errors
Loading instructions
Program parameters
Conclusion

D-3
D-5
D-8
D-9
D-15
D-16
D-17
D-17
D-19

D-4

DBUG - SYMBOLIC DEBUGGER — USER MANUAL -- April 26, 1982

* DBUG - SYMBOLIC DEBUGGER AND SINGLE STEP PROCESSOR *

** INTRODUCTION **

DBUG has been created for the assembly language
programmer to make debugging assembly language programs
much easier. Often programs can contain faults which
can only be found by single stepping through them,
while observing the registers and memory locations
after each step. DBUG allows the user to do this and
much more. The TRSDOS (1) DEBUG fills the entire
screen with hexdumps over-writing all that was on the
screen and, above all, it does not disassemble the
current OP-code to which the PC register points. Other
debuggers such as ZBUG (2) are powerful but have a
range of commands so hard to memorize that continual
referal to the manual is required for command syntax.
Also, ZBUG falls short by not showing the register
contents after each step unless the user asks to see
them, this makes using ZBUG tedious.

The experienced assembly language programmer will
find a flexibility never experienced before by the
MODEL I or III user. The beginner assembly language
programmer will find in DBUG an ease of use not offered
by any other debugger. Often the beginner is turned
away from assembly language programming because of the
difficulty in debugging his programs. A fault as
simple as leaving out a POP before executing a RET for
instance could cause an intermittent fault with the
program responding differently every time it is
executed. These sort of faults can be very hard to
find but will show up easily by single stepping. This
is why many would-be assembly language programmers turn
to so called ’’high level” languages like BASIC and
never get to know the power of assembly language. I am
convinced that if a good assembler and debugging
utility like DBUG is used that writing assembly
language programs can often be just as easy as writing

D-5

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

a program in a ’’high level language”. Even more so if
the ROM calls described in the ROM REFERENCE manual are
used.

DBUG was written with the following aims in
mind:

1) . The work display should use as little
space on the screen as possible.

2) . Each location pointed to by the PC should
be shown in HEX and in MNEMONICS.

3) . All registers, memory locations etc.
should be alterable by the user.

4) . Break point handling should be allowed
for.

5) . The user should be able to single step
through a program or execute CALLs and
RSTs at choice.

Finally I would like to explain the difference
between a monitor and a debugger. The difference
between these two utilities is not well defined, but
basically, a monitor is a program which can display HEX
dumps and ASCII dumps of memory areas and can be used
to examine and edit memory, move blocks of data to and
from disk, zero memory and search for bytes or words in
memory, to mention just a few common functions. A
debugger must, as its most basic function, allow the
user to single step through a program and dynamically
show the programmer the effects of each step.
Everything else that the debugger does centres around
this main function. When you first look at the work
display of DBUG you might wonder why it only uses three
lines at the bottom of the screen. This means for
instance that only 8 bytes are shown at any time by the
memory display section while in HEX mode. This has been

D-6

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

done to keep as much of the screen free as possible for
use by your application programs which may use the
screen to display text and/or graphics. If DBUG used
more display area text written by your programs would
most likely end up being over written by hex. dumps
and the like. The idea here is that the DBUG work
display is a '’window” into the Z80 cpu, which shows the
status and contents of the registers at all times.
This window should be as small as possible so as not to
interfere with anything else.

D-7

DBUG - SYMBOLIC DEBUGGER -- USER MANUAL -- April 26, 1982

**** THE WORK DISPLAY ****

As was said earlier the work display is a window
into the Z80 cpu and memory. This section will discuss
the format used.

The work display uses the bottom 4 lines on the
screen, a typical display might look like this:

A F BC DE HL IX IY PC > (RST 30)00 IN 02B2 187F 614F 2208 FFFF 1350> F719 2221 41D1 E170
2800> 41D7 CD2C 25E5 2190 SP= FFBF> 1E1D 1E1D EF19 0000

On the top line the general purpose registers are
shown with their contents underneath them on the
second line. In the right top corner, the current
disassembled opcode is shown between brackets. The F
(flag) register is shown with its flags, if the flag is
displayed it is set (1) if it is not shown it is reset
(0). In the example the PC register has 1350
underneath it. This means that the PC register
contains 1350H, the following the 1350 signifies
that this section of memory is displayed to the right
of it, so that we can see where the PC register is
pointing. On the third line 2800] is displayed, this
is the memory pointer, the "]" signifies that the data
following it is the contents of the memory location
displayed. (NOTE that on your screen and in the sample
above the ”]” is displayed as the "greater-than”
symbol) The same line shows the SP (stack pointer) in
the same fashion. The fourth line is used for command
input.

D-8

DBUG - SYMBOLIC DEBUGGER -- USER MANUAL — April 26, 1982

*** DBUG COMMAND LIST. ***

All commands are entered from the keyboard with their
parameters, if specified. In the command decription
below nnnn represents a four digit HEXADECIMAL number.
Incorrect entries will cause an error message to
appear. All commands shown with spaces between them
can be used with or without these spaces. The commands
shown in lowercase are input using the SHIFT key.
(note that on the model 3 a shift 0 must be used before
these commands can be output) All commands must be
followed with the ENTER key to execute them. This
allows an erronous entry to be edited before it is
executed.

COMMAND DESCRIPTION

A (Ascii) This command causes all data to
be displayed in ASCII format. The most
significant bit is stripped before the
characters are displayed.

B nnnn (Breakpoint) This command allows the user
to set a breakpoint anywhere in memory at
nnnn. For example B 45A5 causes the
break point to be set at 45A5 hex. Note
that only one break point is allowed at
the one time. If a breakpoint has
already been set an error message will be
displayed. A breakpoint is automatically
cleared when it is reached. Because DBUG
uses a single byte breakpoint (RST 30)
programs will not crash inexplicably as
happens with monitors which use 3 byte
breakpoints. (also see the K command).

b (Return to BASIC) Entering a [SHIFT] B
will cause DBUG to pass control to BASIC.
(Note that disk users should not issue

D-9

DBUG - SYMBOLIC DEBUGGER — USER MANUAL -- April 26, 1982

(restart) and then return.

this command UNLESS DBUG
DISK-BASIC).

was invoked by

c (do Call) The ”C” command
execute completely a

causes DBUG
CALL or

to
RST

• (Disassemble) This command has several
uses, first it can be used to disassemble
the area pointed to by the PC register,
one instruction at a time. Secondly it
is used to SKIP an instruction while
single stepping through a program. The
full-stop (period) key is used because it
is conveniently located next to the ENTER
key on the keypad. It will make
disassembling by instruction much easier.

d (Return to DOS) Entering a [SHIFT] D will
cause DBUG to pass control to DOS. (Note
that this command should only be used by
disk users).

E nnnn (Edit memory) The edit command is used to
alter memory location nnnn. Each memory
address starting at nnnn is shown
followed by its current content displayed
either in HEX or ASCII format. The E
command has its own subset of control
keys which is listed below. Note that
the edit function will behave differently
in ASCII mode (see A command above)
compared to HEX mode. Note the following
differences: The memory contents are
displayed as a single alpha-numeric
character and keyboard input is only a
single character, again alphanumeric.
This is useful if it is necesary to type
text straight into memory.

D-10

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

EDIT SUB COMMANDS:

UP ARROW (ESC) Use this key to advance
the edit pointer by one.

DOWN ARROW (CTRL) Use this key to
decrement to the previous
memory location.

BREAK Use BREAK to escape the EDIT
command.

NOTE: The arrow keys will have to
be struck twice or followed
by ENTER while in the HEX
mode, as all input is in two
digits while editing in HEX
mode.

G (Goto) This command causes execution to
resume at the current PC address. This
is useful after a break point has been
set.

UP-ARROW (ESC) The up arrow key causes the PC
register to be incremented by one. This
is often useful.

DOWN-ARROW (CTRL) The down arrow key causes the PC
to be decremented by one.

J nnnn (Jump) The jump command is used to jump
to memory location nnnn, e.g. J 87FE
will cause program execution to resume at
87FE hex.

K (Kill breakpoint) As the name implies
this command can be used to erase an
unused breakpoint. This command must be

D-ll

DBUG - SYMBOLIC DEBUGGER — USER MANUAL -- April 26, 1982

used to erase a breakpoint if it is
desired to enter a new breakpoint while
an old breakpoint is still in force.

L xxxxxx (Load tape) This command loads a "system"
format tape with a filename of up to 6
characters in memory. For instance L
SAMPLE would search the tape for a
program called SAMPLE and then load it.
After loading is completed the entry
point will be contained in the memory
pointer at the lower left of the DBUG
screen display. The "J nnnn" command can
then be used to Jump to the program just
loaded or the PC register can be set to
the entry point value for single stepping
or disassembly. MODEL 3 users may set
the baud rate switch at 4211H to zero for
500 baud or to anything else for 1500
baud. This can be done using the Edit
command.

M nnnn (Memory) The M command will cause the
memory pointer to be updated to point to
nnnn.

P (Print) This will cause the work display
to be printed on the line printer.

R rp nnnn (Register modify) This command allows the
user to modify any register pair. Use
the register pair name for rp, e.g. AF
for register pair AF, SP for the stack
pointer etc. The only non standard code
is for the program counter which uses
code : PR. The following codes are
recognised: AF, BC, DE, HL, SP, IX, IY,
PR. For example R PR 1234 will set the
PC to 1234 hex.

D-12

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

S (clear Screen) Entering ”S” will clear
the screen and reset the cursor to the
top of the screen,

[CLEAR] or / (Step) This is the single step command.
The CLEAR key is used as it is located
next to the ENTER key on the main key
board. It causes the instruction pointed
to by PC to be executed. (SYSTEM-80
users can use the / key instead)

W nnnn nnnn nnnn xxxxxx
(Write system tape) The W command writes
a block of memory to tape, which can be
reloaded with the L command (or SYSTEM
command from BASIC). The three sets of
hexadecimal numbers ’’nnnn” are in START
END ENTRY format, ’’xxxxxx” means that a
filename of up to 6 characters can be
used. For example if we have a machine
language program starting at 7000H,
ending at 7100H with an entry point of
700FH in memory, and we wish to call it
SAMPLE, then the correct statement to
write it to tape would be:

W 7000 7100 700F SAMPLE

Note that the spaces separating the
hexadecimal numbers and filename are
required with this command.

; The key is used to advance the memory
pointer by 8 so that the next 8 bytes
will be displayed.

D-13

DRUG - SYMBOLIC DEBUGGER — USER MANUAL -- April 26, 1982

The ,l-" key is used to decrement the
memory pointer by 8 so that the previous
8 bytes are displayed.

D-14

DBUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

** EDIT SUBCOMMANDS **

**** QUICK REFERENCE TABLE ****

COMMAND DESCRIPTION

A
B nnnn
SHIFT B
C

ASCII mode.
Set break point at nnnn.
Return to BASIC.
Execute Call or RST.

• Disassemble (Bypasses instruction
without executing it)

SHIFT D
E nnnn
G
J nnnn
K
L xxxxxx

Return to DOS ready mode.
Edit memory starting at nnnn.
Goto PC address.
Jump to nnnn.
Kill break points.
Load tape with file name xxxxxx in
memory.

M nnnn
P
R rp nnnn
S
CLEAR or /
W nnnn nnnn

Set Memory pointer to nnnn.
Print work display on line printer.
Load register pair rp with nnnn.
Clears the screen.
Single Step.

nnnn xxxxxx
Write memory to tape.

X Hex mode.
Advance memory pointer by 8.
Decrement memory pointer by 8.

DOWN ARROW
UP ARROW

(CTRL) Decrement PC by 1.
(ESC) Increment PC by 1.

DOWN ARROW
UP ARROW
BREAK

(CTRL) Decrement Edit address by 1.
(ESC) Increment Edit address by 1.
Escape edit command.

D-15

)BUG - SYMBOLIC DEBUGGER — USER MANUAL — April 26, 1982

** ERRORS **

The message
cases:

"ERROR" is displayed in the following

1). The C command is used while the PC is not
pointing to a RST or CALL.

2).
3).
4).

An undefined command is issued.
Syntax error.
Trying to set a breakpoint while another
is still in force.

5). When trying to set a breakpoint or single
step through ROM.

The message "Illegal opcode" will be
displayed if the current opcode to which
the PC is pointing is an undefined code
for the Z80.

D-16

DBUG - SYMBOLIC DEBUGGER -- USER MANUAL -- April 26, 1982

**** LOADING INSTRUCTIONS ****

The tape contains four versions of the DBUG
program, each has a different memory location, they
are:

NAME START END ENTRY MEMORY-SIZE
DBUG6 5F3O 6FF7 5F3O 24290
DBUG7 6F3O 7FF7 6F3O 28386
DBUGB AF3O BFF7 AF3O 44770
DBUGF EF3O FFF7 EF3O 61154

There is a copy of each version in the order shown
on each side of the tape. The memory size shown is
lower than the start value to leave some stack space
for DBUG to use. Load DBUG using the SYSTEM command.
As soon as loading is completed type a "/” to
initialize and enter DBUG, After doing this two things
will have happened. First, the SYSTEM command has been
altered to cause entry into DBUG, second DBUG is
entered. You can return to BASIC by typing [SHIFT] B
or use DBUG immediately. From now on if the command
SYSTEM is entered DBUG will appear. If it is desired
to use SYSTEM for its normal function (to load a tape)
use the DBUG tape facilities instead.

WARNING --- *** IF DBUG IS ALREADY RESIDENT DO NOT
RELOAD OR TRY TO LOAD A DIFFERENT VERSION OF DBUG
UNLESS THE SYSTEM IS SWITCHED OFF FIRST!!! OTHERWISE
THE SYSTEM COULD CRASH ***

Disk users can load the programs from tape and
create CMD files, these can than be directly executed
from DOS. However if it is desired to use DBUG with
DISK-BASIC, execute BASIC and set the memory size for
the particular version of DBUG being used. Then,
(assuming DBUG is on disk, with filename "DBUG") use
CMD "DBUG" (NEWDOS) or CMD"l","DBUG" (TRSDOS), this

D-17

DBUG - SYMBOLIC DEBUGGER — USER MANUAL April 26, 1982

will cause DBUG to execute. DBUG can now be used as
usual or aborted by using [SHIFT] B, which will
re-enter the BASIC READY mode. To re-enter DBUG all
that is required is to use the SYSTEM command from
BASIC.

WARNING -- **** DO NOT USE THE ”CMD” COMMAND TO
RELOAD DBUG FORM DISK IF IT IS ALREADY RESIDENT AS THIS
CAN CAUSE THE SYSTEM TO CRASH ! ! ! USE THE ’’SYSTEM”
COMMAND INSTEAD ****

D-18

DBUG - SYMBOLIC DEBUGGER -- USER MANUAL -- April 26, 1982

*** CONCLUSION ***

It must be recognised that trying to single step
through DBUG itself can cause the computer to lock up.
This will happen as soon as a break point is set by the
single step processor into the break point handling
routine itself, causing an endless loop. The TRSDOS
DEBUG uses the same RST vector for setting breakpoints
as DBUG does, this means that the two CANNOT be active
at the same time. However the b and d commands restore
the RST vector and DEBUG can then be used, but make
sure that DBUG does not leave a breakpoint by using the
K command before returning to BASIC or DOS. The b,d,G
and J commands will leave a break point in force. If
this is undesirable Kill them before invoking these
commands. DBUG disables the interrupts, this means
that the real time clock will not function. Note that
all numbers in the symbolic representation of the
instruction at the PC are in hexadecimal, including
index numbers. For instance : LD HL,4590 means ; load
HL with 4590 hex., and LD (lY+30),B means load the
address pointed to by IY plus 30 HEX, with the contents
of the B register. It must also be noted that the PC
register is central to the operation of DBUG, DBUG will
disassemble and single step using the value in the PC
register. This means that the PC value will need to be
altered by the user when required.

D-19

LEVEL 2 ROM
ASSEMBLY LANGUAGE TOOLKIT

by Edwin PaayFOR TRS-80 MODEL 1, MODEL 3AND PMC-80/VIDEO GENIE/SYSTEM 80
Those who write Assembly Language programs for the TRS-80 are

aware there is 12K of ROM full of useful machine language routines which,
if they only knew how to get at them, would save reinventing the wheel
time and time again. A number of books have been published which
effectively give disassembled listings of the Model 1 ROM with a greater or
lesser number of comments. They are helpful but leave the reader with a
great deal of manual work to do before he or she can make use of ROM
routines.

The Assembly Language Toolkit overcomes all that. It consists of two
major components:- a ROM Reference Manual and DRUG, a debugging
monitor program. In the ROM Reference Manual, the useful and usable
routines in the Model 1 AMD Model 3 ROMs are catalogued and are
organised into subject specific tables so that you can quickly identify all
the routines to carry out a given function and then choose the one which
meets your requirements. Detailed information is supplied about each
routine, including the effects of each on the various Z80 registers and how
to use them in your own programs. The contents of system RAM are also
detailed and you are shown how to intercept BASIC routines. With this
knowledge you can add your own commands to BASIC, for instance or
position BASIC programs in high memory — the only restriction is your
own imagination!

The text is liberally illustrated with sample programs which show you
how you can use ROM routines to speed up your machine-language
programs and reduce the amount of code you need to write.

DBUG is a machine language program distributed on cassette but
which also performs from disk. Designed to help speed up your assembly
language program development, DBUG allows you to single-step through
your program; has a disassembler which disassembles the next instruction
before executing it or allows you to by-pass execution and pass on through
the program, disassembling as you go; displays/edits memory in Hex or
ASCII; allows Register editing; has the ability to read and write System
tapes; and all this on the bottom three lines of your screen, thus freeing the
rest of the screen for program displays. Four versions of DBUG are included
in the package to cope with different memory sizes.

	‎G:\TEMP30\SYS80_05_20220914_0001a.png‎
	‎G:\TEMP30\SYS80_05_20220914_0002.png‎
	‎G:\TEMP30\SYS80_05_20220914_0003.png‎
	‎G:\TEMP30\SYS80_05_20220914_0004.png‎
	‎G:\TEMP30\SYS80_05_20220914_0005.png‎
	‎G:\TEMP30\SYS80_05_20220914_0006.png‎
	‎G:\TEMP30\SYS80_05_20220914_0007.png‎
	‎G:\TEMP30\SYS80_05_20220914_0008.png‎
	‎G:\TEMP30\SYS80_05_20220914_0009.png‎
	‎G:\TEMP30\SYS80_05_20220914_0010.png‎
	‎G:\TEMP30\SYS80_05_20220914_0011.png‎
	‎G:\TEMP30\SYS80_05_20220914_0012.png‎
	‎G:\TEMP30\SYS80_05_20220914_0013.png‎
	‎G:\TEMP30\SYS80_05_20220914_0014.png‎
	‎G:\TEMP30\SYS80_05_20220914_0015.png‎
	‎G:\TEMP30\SYS80_05_20220914_0016.png‎
	‎G:\TEMP30\SYS80_05_20220914_0017.png‎
	‎G:\TEMP30\SYS80_05_20220914_0018.png‎
	‎G:\TEMP30\SYS80_05_20220914_0019.png‎
	‎G:\TEMP30\SYS80_05_20220914_0020.png‎
	‎G:\TEMP30\SYS80_05_20220914_0021.png‎
	‎G:\TEMP30\SYS80_05_20220914_0022.png‎
	‎G:\TEMP30\SYS80_05_20220914_0023.png‎
	‎G:\TEMP30\SYS80_05_20220914_0024.png‎
	‎G:\TEMP30\SYS80_05_20220914_0025.png‎
	‎G:\TEMP30\SYS80_05_20220914_0026.png‎
	‎G:\TEMP30\SYS80_05_20220914_0027.png‎
	‎G:\TEMP30\SYS80_05_20220914_0028.png‎
	‎G:\TEMP30\SYS80_05_20220914_0029.png‎
	‎G:\TEMP30\SYS80_05_20220914_0030.png‎
	‎G:\TEMP30\SYS80_05_20220914_0031.png‎
	‎G:\TEMP30\SYS80_05_20220914_0032.png‎
	‎G:\TEMP30\SYS80_05_20220914_0033.png‎
	‎G:\TEMP30\SYS80_05_20220914_0034.png‎
	‎G:\TEMP30\SYS80_05_20220914_0035.png‎
	‎G:\TEMP30\SYS80_05_20220914_0036.png‎
	‎G:\TEMP30\SYS80_05_20220914_0037.png‎
	‎G:\TEMP30\SYS80_05_20220914_0038.png‎
	‎G:\TEMP30\SYS80_05_20220914_0039.png‎
	‎G:\TEMP30\SYS80_05_20220914_0040.png‎
	‎G:\TEMP30\SYS80_05_20220914_0041.png‎
	‎G:\TEMP30\SYS80_05_20220914_0042.png‎
	‎G:\TEMP30\SYS80_05_20220914_0043.png‎
	‎G:\TEMP30\SYS80_05_20220914_0044.png‎
	‎G:\TEMP30\SYS80_05_20220914_0045.png‎
	‎G:\TEMP30\SYS80_05_20220914_0046.png‎
	‎G:\TEMP30\SYS80_05_20220914_0047.png‎
	‎G:\TEMP30\SYS80_05_20220914_0048.png‎
	‎G:\TEMP30\SYS80_05_20220914_0049.png‎
	‎G:\TEMP30\SYS80_05_20220914_0050.png‎
	‎G:\TEMP30\SYS80_05_20220914_0051.png‎
	‎G:\TEMP30\SYS80_05_20220914_0052.png‎
	‎G:\TEMP30\SYS80_05_20220914_0053.png‎
	‎G:\TEMP30\SYS80_05_20220914_0054.png‎
	‎G:\TEMP30\SYS80_05_20220914_0055.png‎
	‎G:\TEMP30\SYS80_05_20220914_0056.png‎
	‎G:\TEMP30\SYS80_05_20220914_0057.png‎
	‎G:\TEMP30\SYS80_05_20220914_0058.png‎
	‎G:\TEMP30\SYS80_05_20220914_0059.png‎
	‎G:\TEMP30\SYS80_05_20220914_0060.png‎
	‎G:\TEMP30\SYS80_05_20220914_0061.png‎
	‎G:\TEMP30\SYS80_05_20220914_0062.png‎
	‎G:\TEMP30\SYS80_05_20220914_0063.png‎
	‎G:\TEMP30\SYS80_05_20220914_0064.png‎
	‎G:\TEMP30\SYS80_05_20220914_0065.png‎
	‎G:\TEMP30\SYS80_05_20220914_0066.png‎
	‎G:\TEMP30\SYS80_05_20220914_0067.png‎
	‎G:\TEMP30\SYS80_05_20220914_0068.png‎
	‎G:\TEMP30\SYS80_05_20220914_0069.png‎
	‎G:\TEMP30\SYS80_05_20220914_0070.png‎
	‎G:\TEMP30\SYS80_05_20220914_0071.png‎
	‎G:\TEMP30\SYS80_05_20220914_0072.png‎
	‎G:\TEMP30\SYS80_05_20220914_0073.png‎
	‎G:\TEMP30\SYS80_05_20220914_0074.png‎
	‎G:\TEMP30\SYS80_05_20220914_0075.png‎
	‎G:\TEMP30\SYS80_05_20220914_0076.png‎
	‎G:\TEMP30\SYS80_05_20220914_0077.png‎
	‎G:\TEMP30\SYS80_05_20220914_0078.png‎
	‎G:\TEMP30\SYS80_05_20220914_0079.png‎
	‎G:\TEMP30\SYS80_05_20220914_0080.png‎
	‎G:\TEMP30\SYS80_05_20220914_0081.png‎
	‎G:\TEMP30\SYS80_05_20220914_0082.png‎
	‎G:\TEMP30\SYS80_05_20220914_0083.png‎
	‎G:\TEMP30\SYS80_05_20220914_0084.png‎
	‎G:\TEMP30\SYS80_05_20220914_0085.png‎
	‎G:\TEMP30\SYS80_05_20220914_0086.png‎
	‎G:\TEMP30\SYS80_05_20220914_0087.png‎
	‎G:\TEMP30\SYS80_05_20220914_0088.png‎
	‎G:\TEMP30\SYS80_05_20220914_0089.png‎
	‎G:\TEMP30\SYS80_05_20220914_0090.png‎
	‎G:\TEMP30\SYS80_05_20220914_0091.png‎
	‎G:\TEMP30\SYS80_05_20220914_0092.png‎
	‎G:\TEMP30\SYS80_05_20220914_0093.png‎
	‎G:\TEMP30\SYS80_05_20220914_0094.png‎
	‎G:\TEMP30\SYS80_05_20220914_0095.png‎
	‎G:\TEMP30\SYS80_05_20220914_0096.png‎
	‎G:\TEMP30\SYS80_05_20220914_0097.png‎
	‎G:\TEMP30\SYS80_05_20220914_0098.png‎
	‎G:\TEMP30\SYS80_05_20220914_0099.png‎
	‎G:\TEMP30\SYS80_05_20220914_0100.png‎
	‎G:\TEMP30\SYS80_05_20220914_0101.png‎
	‎G:\TEMP30\SYS80_05_20220914_0102.png‎
	‎G:\TEMP30\SYS80_05_20220914_0103.png‎
	‎G:\TEMP30\SYS80_05_20220914_0104.png‎
	‎G:\TEMP30\SYS80_05_20220914_0105.png‎
	‎G:\TEMP30\SYS80_05_20220914_0106.png‎
	‎G:\TEMP30\SYS80_05_20220914_0107.png‎
	‎G:\TEMP30\SYS80_05_20220914_0108.png‎
	‎G:\TEMP30\SYS80_05_20220914_0109.png‎
	‎G:\TEMP30\SYS80_05_20220914_0110.png‎
	‎G:\TEMP30\SYS80_05_20220914_0111.png‎
	‎G:\TEMP30\SYS80_05_20220914_0112.png‎
	‎G:\TEMP30\SYS80_05_20220914_0113.png‎
	‎G:\TEMP30\SYS80_05_20220914_0114.png‎
	‎G:\TEMP30\SYS80_05_20220914_0115.png‎
	‎G:\TEMP30\SYS80_05_20220914_0116.png‎
	‎G:\TEMP30\SYS80_05_20220914_0117.png‎
	‎G:\TEMP30\SYS80_05_20220914_0118.png‎
	‎G:\TEMP30\SYS80_05_20220914_0119.png‎
	‎G:\TEMP30\SYS80_05_20220914_0120.png‎
	‎G:\TEMP30\SYS80_05_20220914_0121.png‎
	‎G:\TEMP30\SYS80_05_20220914_0122.png‎
	‎G:\TEMP30\SYS80_05_20220914_0123.png‎
	‎G:\TEMP30\SYS80_05_20220914_0124.png‎
	‎G:\TEMP30\SYS80_05_20220914_0125.png‎
	‎G:\TEMP30\SYS80_05_20220914_0126.png‎
	‎G:\TEMP30\SYS80_05_20220914_0127.png‎
	‎G:\TEMP30\SYS80_05_20220914_0128.png‎
	‎G:\TEMP30\SYS80_05_20220914_0129.png‎
	‎G:\TEMP30\SYS80_05_20220914_0130.png‎
	‎G:\TEMP30\SYS80_05_20220914_0131.png‎
	‎G:\TEMP30\SYS80_05_20220914_0132.png‎
	‎G:\TEMP30\SYS80_05_20220914_0133.png‎
	‎G:\TEMP30\SYS80_05_20220914_0134.png‎
	‎G:\TEMP30\SYS80_05_20220914_0135.png‎
	‎G:\TEMP30\SYS80_05_20220914_0136.png‎
	‎G:\TEMP30\SYS80_05_20220914_0137.png‎
	‎G:\TEMP30\SYS80_05_20220914_0138.png‎
	‎G:\TEMP30\SYS80_05_20220914_0139.png‎
	‎G:\TEMP30\SYS80_05_20220914_0140.png‎
	‎G:\TEMP30\SYS80_05_20220914_0141.png‎
	‎G:\TEMP30\SYS80_05_20220914_0142.png‎
	‎G:\TEMP30\SYS80_05_20220914_0143.png‎
	‎G:\TEMP30\SYS80_05_20220914_0144.png‎
	‎G:\TEMP30\SYS80_05_20220914_0145.png‎
	‎G:\TEMP30\SYS80_05_20220914_0146.png‎
	‎G:\TEMP30\SYS80_05_20220914_0147.png‎
	‎G:\TEMP30\SYS80_05_20220914_0148.png‎
	‎G:\TEMP30\SYS80_05_20220914_0149.png‎
	‎G:\TEMP30\SYS80_05_20220914_0150.png‎
	‎G:\TEMP30\SYS80_05_20220914_0151.png‎
	‎G:\TEMP30\SYS80_05_20220914_0152.png‎
	‎G:\TEMP30\SYS80_05_20220914_0153.png‎
	‎G:\TEMP30\SYS80_05_20220914_0154.png‎
	‎G:\TEMP30\SYS80_05_20220914_0155.png‎
	‎G:\TEMP30\SYS80_05_20220914_0156.png‎
	‎G:\TEMP30\SYS80_05_20220914_0157.png‎
	‎G:\TEMP30\SYS80_05_20220914_0158.png‎
	‎G:\TEMP30\SYS80_05_20220914_0159.png‎
	‎G:\TEMP30\SYS80_05_20220914_0160.png‎
	‎G:\TEMP30\SYS80_05_20220914_0161.png‎
	‎G:\TEMP30\SYS80_05_20220914_0162.png‎
	‎G:\TEMP30\SYS80_05_20220914_0163.png‎
	‎G:\TEMP30\SYS80_05_20220914_0164.png‎
	‎G:\TEMP30\SYS80_05_20220914_0165.png‎
	‎G:\TEMP30\SYS80_05_20220914_0166.png‎
	‎G:\TEMP30\SYS80_05_20220914_0167.png‎
	‎G:\TEMP30\SYS80_05_20220914_0168.png‎
	‎G:\TEMP30\SYS80_05_20220914_0169.png‎
	‎G:\TEMP30\SYS80_05_20220914_0170.png‎
	‎G:\TEMP30\SYS80_05_20220914_0171.png‎
	‎G:\TEMP30\SYS80_05_20220914_0172.png‎

