Jystem 80

BASIC MANUAL

PREFACE

As the Computer Age gathers momentum, more and more people are becoming aware
of the latest dramatic development: the microcomputer. To take full advantage of these
incredibly powerful new tools, you need to be able to write programs. The easiest and most
effective way to learn programming is by actually using the computer yourself, to get
“hands-on™ experience.

This manual is designed to help you learn computer programming on the System 80
Computer, using the “hands-on” approach. It provides a comprehensive software course,
based on the Active Commands. Text Editing and program statements available in the
Systern 80 powerful Level IT BASIC language.

To get the most from the manual, we suggest very strongly that you read it from’the
first page to the last, without skipping any portion of the text or any of the numerous
examples given. Not only that, but we suggest that you try each example for yourself on
the System 80 computer as you go along. That way, you should really have a good grasp
of programming by the time you reach the last page.

Happy and effective computing with vour System 80!

~ TABLE OF CONTENTS

I =

PREFACE

INTRODUCTION

ACTIVE COMMANDS

TEXT EDITING

BASIC PROGRAMMING STATEMENTS
PROCESSING ARRAYS

STRING HANDLING

BUILT-IN ARITHMETIC FUNCTIONS
GRAPHICS FEATURES

SPECIAL FEATURES

RESERVED WORDS
ERROR CODES

APPENDIX A
B
C CONTROL, GRAPHICS, AND ASCII CODES
D
E

PROGRAM LIMITS
VIDEO DISPLAY MAP

page

12
20
28

61
67

73
76

77

79
80

33
83

86

INTRODUCTION

In the System 80, there are four operating levels:

(1

(2)

(3)

(4)

The Active Command Level: In this level, the computer responds to commands as
soon as they are entered followed by hitting the NEW LINE key, Whenever the >
signs are on the display, the user is in the Active Command level. (For more details
see Chapter 1),

The Program Execution level: This level is entered by typing RUN, and the BASIC
program in the memory is executed. All numeric variables are set to zero and all string
variables are set to null before execution starts, that is right after the RUN command
is entered. (For more detail see the RUN command in Chapter 1).

The Text Editing level: This level allows the user to modify, delete and add the
content of the program in the memory. The user can change any part of the program
text as desired, instead of retyping the entire program line.

{(see Chapter 2).

The Monitor level: This level permits the user to load machine language “object files”
into memory. These object files (either program or data) can be accessed by other
BASIC programs, or executed independently.

(see the SYSTEM command in Chapter 1).

Before poing into program coding, we should be familiar with some basic concepts of
programming.

1. Keywords: There is a set of keywords (reserved words which form the skeleton of a
program in Extended Basic. Some of the keywords are:
PRINT
INPUT
IF
THEN
GOTO
END

For the entire list of keywords, please refer to Appendix A. The keywords act as the guide-
line of a program.

For example . r

[1
— 1 ﬁmmﬂzq "ADD TWO NUMBERS PROGRAM . *

20 INPUT "ENTER THE FIRST NUMBER ;A
quc.ﬁr._mzqmm THE SECOND NUMEER "iB
Wl c=pn+p I
Se PRINT "THE RESULT IS :™C
&6 END L]

R _

LINE NOS. KEYWORDS SECONDARY PART OF STATEMENTS

All this program does is to accept two numbers, add them together, and print out the result.

READY
2RUN

ADD TWO HUMBERS PROGRAM
ENTER THE FIRST NUMBER 7 42
ENTER THE SECOND NUMBER 7 435
THE RESULT IS . &7

2. Variables: Do vou remember your mail box number?
Of course, right! The mail box number serves as a label which identifies itself from the
others, so the postman can put the right letter to the right box,

The variable names {or identifiers) in a program function exactly like the mail box number.
However, the variables use figurative names instead of numbers.

Let us consider the following events:

A=170

A contant

variable
name

Tn event (a), when the computer executes the assignment statement A = 170, it searches the
location of variable A, and put the value of 170 into A’s content. Just like in event (b), once

the postman sees the address on the letter, he will bring the letter to the mail box 456, in
ELM street. Simple, right!

With the same process, consider the following program.

180 A = 1 ‘REM FILL THE CONIENT OF A WITH 4.

20 R =f + 16 :REM ADD 18 TO A, STORE THE RESULT IN R
WBEB=A%2 :REM A X2 STORE THE RESULT IN B.

40 PRINT "THE RESULTS FRE :"“;A.B

50 END :REM END OF PROGRAM

line10 [A] 1 |

line 30 A 11
B 22
READY
HRUN
THE RESULTS ARE : 11 22

So far we only deal with variables that contain numbers; actually, variables may contain
strings (one or more characters).

However, these variables are a little bit different from numeric variables.

18 AF = "MR. JOHN ADAMS. "
26 B§ = "P. 0. BOX 456, "
3L C$ = "ELM STREET. "

4@ PRINT As

38 FRINT B#: C$

58 END

RERDY

ZRUN

MR. JOHN ADAMS.
F. 0. BOX 456, ELM STREET.

This program assigns “MR. JOHN ADAMS,”, “P.O. BOX 456,”, “ELM STREET.” to AS$,
BS, C$ respectively. Then print out the contents of A$, B$ and C§ onto the screen.

Note that there is a § sign following A, B and C. The “$” tells the computer that vari-
ables A$, B§, and C$ are string variables (variables that contain letters, symbols, as well as
non - computational numbers). The value must be enclosed in double quotation marks. For
example: D$ = “ABCDE 12345 * = /+”

Note that if you assign the wrong thing to the wrong variable, the computer will not under-
stand and will give you an error message.

For example:
A = “WRONG DATA” (assign a string value to a numeric variable)
BS = 100 (assign a numeric value to a string variable)

Begides, variable names must be unique. Just like two mail boxes cannot bear the same
number.

The System 80 accepts variable names which are longer than two characters; however, only
the first two characters are used by the computer to distinguish between other variables.
Variable names must begin with a letter (from A to Z) and followed by another letter or
a digit (from 0 to 9). The following are valid and distinct variables:

A, AA, AB, AC, A0, A1,BN,BZ,B7,2Z, ZI}.

Note: The user should not use any variable name which contains words with special meaning
(or reserved words) in the BASIC language. For example, “CIF” cannot be used as a variable
name, since it contains the BASIC keyword “IF”.

A list of reserved words is in Appendix A,

Variable Types

There are four types of variables in the System 80 integer, single precision, double precision,
and string variables. The first threc types are used to store numeric values, whereas the
last type is used only for character storage.

1. %: integer (whole numbers within the range -32769 to +32769)
Example

A%=-30
BB% = 8000

2. ! : single precision {6 significant digits)
Exampie

Al=-503
D4! = 123456

3. # : double precision (16 significant digits)
Example
A7 = 3.141592653589
A2#= -4567.8901234

4. % : string (maximum length : 255 characters)
Example

A$ = “SYSTEM 80
M2$ = “THE RESULT OF (A*B+15)/2.5IS:”

Though A%, Al, A#f , A§ all have the same variable name “A”, their types are different,
that is %, !,# , §; they are considered to be distinct variables by the computer.

Artithmetic Operators
Whenever any computation is needed in a program the arithmetic operators are used.
Example:
5 R=6
iB A =R # 3 1416 4« 2 REM COMPUTE THE CIRCUMFERENCE.

28 PRINT "THE CIRCUMFERENCE 15 ;R

3B =3141€ + RL 2 :REM COMPUTE THE RREA OF THE CIRCLE.
48 PRINT "THE ARER IS :"; B :

S8 END

READY
SRUN

THE CIRCUMFERENCE 1S : 37. 6992
THE AREA IS : 113 @98

The System 80 uses the general arithmetic symbols.
+ for addition, — for subtraction, * for multiplication, / for division, and { (the ESC key) for
exponentiation.

13y . . .
For example, the result of § x _MA) is equivalent to the result of 5§ * 12 [(1/3) in

System 80 (Note: you will find no [key on the keyboard, it is represented by the ESC
key).

Relational Operators
Whenever a decision has to be made within a program, a relational operator is needed.
The acceptable operators are:
< {less than) <
> {greater than)
< > {(not equal)

(less than or equal to)
(greater than or equal to)
(equal to)

v
n

Example:

128 IF A < B THEN FRINT "B IS5 GREATER THAN R. “

When the computer executes this statement, if the content of B is greater than the content
of A {i.e. A < B is true), the sentence “B IS GREATER THAN A” will be printed on the
screen. Otherwise the computer will just go to the next statement.

Logical Operators
AND, OR, and NOT are the only logical operators accepted by the System 80.
Example

18 IF A =1 AD B = 5 GOTO S8

The computer branches to line 50 if A =1 and B = 5, otherwise the computer goes to the
next statement following line 10.

10

28 i = (B =2 AND (C > 160

A has the value of -1, if both B =2 and C> 10 are true.
Otherwise A has the value of 0.

48 A = (D {25 OR C(E C 280

A has the value of -1 if either D < 2 or E< 20 is true. When bothD > =2 and E> = 20 are
true, then A has the value of 0,

7@ A = NOT (F > 20

A has the value of -1 if F< = 5.
Otherwise A has the value of 0.

String Operators.

In string operations, the relational operators are used to compare the precedence of two
strings.

Note that the following operations are all true.

"B" < “C" ¢ THE CODE FQR B IS LESS THAN THE CODE FOR C O
"JOHN" > "JACK" ¢ SAME REASON RS ABOVE. 3

"STRING" = "STRING®

"LETTERS" <> "LETTERS " «{ SPACE ALSQ COUNTS. »
f$& = "BD" + "AT" (A% WILL HAYE THE YALUE : BOAT

Order of Operations

Operations in the innermost level of parentheses are performed first, then evaluation
proceeds to the next level, ete. Operations on the same level are performed according to the
following precedence rules.

1. Exponentiation A[B

2. Negation -C

3. Multiplication and Division A*B,C/D

4. Addition and Subtraction C+D,E-F

3. Relational Operators A<B, “C"=“C", 15<> 16
6. Logical Operators NOT, AND, OR

For example, we have a formula,

GRS = A+ B*%C*xD/2+EL 2

The computer will evaluate in the following sequence.

il

If A 2

I
[= S T -V PY]

B
C
D =
E

Then apply to the formuia above

2+3x4%5/2+6[2

L

12 * 5

L |

60 / 2
L1

Therefore the answer should be 68,

1"

CHAPTER 1

ACTIVE COMMANDS

Once the system is set up, with power on, the user should be in the Active Command level.
The normal indication is the word “READY™ followed by a “ = * sign which appears on
the next line at the upper left comer on the display (monitor or TV screen). For convenience
we will call this indication the “ready message”.

At this point, the user should hit the[NEW I INFE]key before entering one of the following
commands through the keyboard.

1. AUTO B. EDIT 15. LLIST
2. CLEAR 9. LIST

3. CLOAD 10. NEW

4. CLOAD? 11. RUN

5. CONT 12, SYSTEM

6. CSAVE I3. TROFF

7. DELETE 14. TRON

We are going to discuss these commands separately, Please note that everything inside the
brackets is optional. For example: AUTO (line number, increment) All the user has to do is
type in the underlined portion:

AUTO 1@. 3

or any numeric value to replace “line number” and ““increment™. In case the option is not
taken, just type in

LIST

The computer will perform certain specified actions automatically. Notice: Every command
should be followed by pressing the[NEW LINE|key.

12

1.1

AUTO (line number, increment)

This command automatically sets the line numbers before each source line is entered.
The option permits the user to specify the beginning line number as well as the in-
crement desired between lines. If the user only types in AUTO followed by the[NEW
LINE|key, the beginning line number will be set at 10, with each increment of 10,
The user may entcr his program statement right after the line number.

Example
=8 PRINT "THIS IS LINE 20 "

Everytime the user hits the NEW LINEkey, the computer will increment the line
number. Until gm_wwm@w@% is hit, the AUTO command will remain in operation.
(Note that whenever AUTO brings up a line that has been used previously, there will
be an asterisk appear right next to the line number. If the user does not want to alter
that line, hit the(BREAK key to turn off the AUTO tunction).

Example
READY
AUTO 1.2
1 LINE 1
I LINE 2
3 LINE S
7 LINE 7
9 [BREAK]
REFRDY
ARUTO 2.2
2 SEEOND LINE
4 FORTH LIMNE
& SIKTH LINE

8 BREAK

READY
>RUTO

16 LINE 18
28 LINE 26
38 LINE 3@
40BREAK]
RERLY
RUT0 1.1
1%

2

e

e

S*

13

1.2 CLEAR (number of bytes)

14

The command will clear a specific number of bytes for strin

not used i.e. type in CLEAR followed by the NEW LINE

storage. If the option is
key, the computer will

reset all numeric variables to zero, and all string variables to null. When the option is
taken, the command will perform, in addition to the first function, a second function:
that is to clear a specified number of bytes for string storage. Note that when the user
turns on the computer, a CLEAR 50 command is performed automatically.

Example

CLEAR 100

Reset all numeric variables to zero, and all string variables to null. Then clears 100

bytes of memory for string storage.

1.3

1.4

1.5

CLOAD (# — cassette number, “file name™)

The command will load a specified program according to the “file name” to the
computer from the appropriate cassette. Before using this command, the user should
re-wind the cassette tape, check the cables and connectors (consuit the user’s manual),
press the PLAY button on the cassette. If everything is ready, type in, for example
CLOAD # 1, “A” then hit the NEW LINE |key. The cassette will be turned on and
starts searching until the file named “A” is found. If the file is found, a
stable and a blinking asterisks will appear at the top right comer of the display to
indicate loading is carrying out. Once the entire program has been loaded in the
computer, the READY message will appear on the display.

Example

CLOAD #-4, "3"

Load from cassette No. 1 the file named 3.
Note that only the first character of the file name is used for CLOAD, CLOAD?, and
CSAVE commands.

CLOAD? (file name)

This command will compare a specific program stored on cassette tape with the one
in the computer’s main memory. Usually, this command is used right after the
CSAVE command which stores a program from the computer’s main memory to a
cassette. The CLOAD? command allows the user to examine whether the copying
(CSAVE) operation is successful.

It is a good practice to include the file name in this command, since the computer will
search for that file, or program, before comparison, starts. Otherwise the first file
encountered on the cassefte will be compared. During the operation, the program on
tape and the program in memory are compared byte by byte. 1f any part does not
match, the message “BAD™ will be display. In this case, the user should repeat the
CSAVE command again. Same as CLOAD Command, the cassette must be re-wound,
cables and connectors checked, with the [PLAY] button on; prior hitting the [NEW
LINE|key. (consult User’s Manual for more details).

CONT

This command continues the program execution, at the point where the execution
has been stopped by theBREAK |key or a STOP statement within the program.

15

1.6 CSAVE#-cassette number, “file name”

1.7

16

1.8

This command stores the program in the computer’s main memory onto cassette tape.
Both the cassetie number and the file name musi be accompanied with this command.
Any alphanumeric character other than double quotes (**) will be acceptable as a file
name. Again, before using the command, the cassette tape must be in a proper start-
ing location (not overlapped with any useful program location). Check the cables
and connectors, press the PLAY and REC buttons of the cassette at the same time,
then start typing the command accordingly.

Example
CSAVE #-2, "C*

Saves a program with label “C” on cassette drive 2, from the main memory.

Warning: keep account of the locations of the saved programs on tape. Find an empty
space for the new program to be loaded, unless you want to erase the old programs.
Erased program are not recoverabie. (Consult user’s manual for more details).

DELETE line number {-line number)

This command will clear the memory location that contains the specified line(s).

Example

DELETE S Clear line 5

DELETE ¥ — 18 Ciear line 7 line, 10 and any line in between.

DELETE -12 Clear from the first line of the program, up to and including line 12,
DELETE . Clear the line currently entered, or edited.

EDIT line number

This command will cause the computer to shift from the Active Command level to the
Editing level. In the Fditing level, the user is allowed to examine and modify the pro-
gram statements in the main memory, by using a set of sub-commands. There must be
a valid line number following the EDIT command, otherwise the command may not
be accepted. Also see Chapter 2.

Example

EDIT 2@

Turns the computer from Active Command level to Editing level — then examines
line 20.

1.9

1.10

1.11

LIST (line number — line number)

This command will inform the computer to display any specified program lines stored
in the main memory. If the option is not used, the computer will scroll the entire
program onto the display. In order to pause and examine the text, the user should hit
the{SHIFT and @ keys simultaneously. The scrolling will continue by hitting any key.

Example
LIST 3 display line 3.
LIST 16 - 28 display line 10, line 20 and any line in between.,
LIST -58 display from the first line up to and include line 50.
LIST 28 - display line 20 and all following lines.
LIST display the current line just entered or edited.
LIST display all lines in the memory,

NEW

This command will clear all program lines; reset numeric variables to zero and string
variables to null. It does not change the memory size previously set by the CLEAR
command.

RUN (line number)

This command will instruct the computer to start executing (or RUN) the user’s pro-
gram stored in main memory. If a line number is not specified, the computer will
start cxecuting from the lowest line number. However, if a line number is provided,
the computer will execute from the given line number to higher order lines. Note
that an error will occur if an invalid line number is used.

Everytime a RUN is executed, a CLEAR command also executed automatically
before it.

Example
RUM S8 start executing at line 50,
RUN start executing at the lowest number line.

17

1.12 SYSTEM

1.14

This command turns the computer into the Monitor Mode. Within this mode, the
user may load his own program or data file in machine code format.

To load an object file from tape, type in SYSTEM and [NEW LINE]: the “*7” symbol
will be displayed. Then type in the file name. The tape will begin loading. When
loading is completed, another “*?” will appear. Type in a slash “/* symbol followed
by the entry point address (in decimal) where the user wants the execution to start.

If the user does not type in the entry address, execution will begin at the address
specified by the object file.

TROFF

This command will turn off the Trace function. Usually follows the TRON
command.

TRON

This command will turn on a Trace function that allows the user to keep track of the
program flow for debugging and execution analysis. Everytime the computer ¢xecutes
a new program line, the line number will be displayed inside a pair of brackets.

Example

Consider the following program:
18 PRINT " 4% PROGRAM 1 #%"
26 R =1
38 IF A = X THEN 7@
48 PRINT A
SeA=AH+1
68 GOTO 4
7@ PRINT " EMD FROGRAM 1.°®
8@ END

Type in
>TRON [NEW LINE]
~RUN NEW LIN

<162 A% PROGRAM 1 #*
{2B2<3004480 1

LB 6304 2
{SE>{6B>{38><{70> END PROGRAM 1.
<8ax

In order to pause execution before iis natural end, the|SHIFT|and @ keys must be
pressed simultaneously. To continue, just press any key.

To turn off the Trace function, enter TROFF. TRON and TROFF are available for
use within usar programs to check if a given line is executed.

Example

93 IF A = B THEN 168
188 TRON

116 A =B + C

128 TROFF

In this portion of a program, if A happens to be not equal to B, then line 110 should
be executed. By using TRON and TROFF inside the program, the user can see
precisely whether line 110 has been executed or not. The computer will display <1 10>
120> if these lines were executed. TRON and TROFF can be removed after a pro-
gram is debugged.

1.15 LLIST

Lisls a program onto the printer. This command [unctions in a very similar way as
the LIST command. If the Line printer is not properly connected, the computer will
enter a dead loop and waits to print the first character. This situation can only be
resolved by turning the printer on or hitting the RESET button.

1.16 RE (starting line number, increment)

This command renumbers the BASIC program. After rearrangement o.*.%m ._:._m numbers,
new statements can be inserted into the tightly packed program. In maa;_o? it helps vmﬁﬂ
program doctumentation. If the starting line number or increment value is not entered, it will

be defaulted to 10.

Example:

RE, 5 [NEWLINE] renumber program with starting line number equal to 10 and increment

by b.

RE INEWLINE renumber program with both starting line number and increment value

egual to 10,

19

21

TEXT EDITING

The purpose of editing in the Systern 80 is to facilitate the user in modifying his programs.
With the Editor, the user need not to type in the entire program every time he makes a
programming mistake or typing error. The need for an editor becomes more critical when
programs arc long and complex.

Inside this chapter we discuss every editing function, including subcommands, that
available for the System 80. A substantial amount of descriptive examples are presented
with each command. Users are advised to try out each editing command before entering
their first program into the system.

EDIT line number

This command shifts the computer from the Active Command level to the Editing
level. The user must specify which line he wants to edit. If the line number is not pro-
vided, an FC error will occur (see Appendix B).

Example

EIT 166 (allow to edit line 100)
EDIT. {allow to edit the current line just entered.)

2.2 [NEW LINE]Key

2.3

20

Once the user presses the [NEW LINE|key while in the Edit mode, the computer will
record all the changes made in that line, and return back to the Active Command level.

In the Edit mode, pressing the space-bar will move the cursor one space to the right
and display any character stored in the preceding position. The user may type in the
value of n before hitting the Space-bar, then the cursor will move n spaces to the right
side.

Suppose we have entered a line into the computer by the command:

ZAUTO 188
106 [F A= B THEN 158 : R = A + 1 : GOTO 1@

24

If the user wants to edit this line, he should type in EDIT 100 followed by the[NEW
LINEkey, like the following:

SEDIT 108

then the display will become:

1
By pressing the Space-bar 12 times, the cursor will mave to the right side by 12
spaces. The display should look like:

188 IF R = B THE

The user may also use the option to display more characters at once. That is, enter
the number of cursorspacesdesired, before hitting the[Space-bar]

Example

Type in 8 followed by the [Space-barjkey:
188 IF A = B THE _

The display will become

106 IF A = B THEW 158 : _

If the user wants to display the next 20 positions, he may type 20 then the mv.wm.mm-_umu
again, The outcome should be:

168 IF A = B THEN 151 : A = A + 1 : GOTO 148 _

n @.m#.@ Key
This action will move the cursor back to the left by n spaces. If number n is not

specified, the cursor only moves back one space at a time. Everything behind the
cursor will disappear from the display; however, it is not erased from the memory.

Example

ie@ IF A = B THEN 150 . A = A + 1 & GOTO 1@8
Hit E%@w@ 5 times, the display will look like:

i¢@ IF A = B THEN 156 : A = A + 1 : GOT_

21

Then type in 10 followed by Backspace key, the display will look like:
leg IF F = B THEM 158 . A = A~

After this sequence of operations, if the user hits the] NEW LINE| key, the display
will look like:

>
That means the computer has returned back to the Active Command level. [f any
further change is desired in line 100, the user must enter the Edit mode again.

2.5 E mmg Key

By pressing the [SHIFT] and [ESClkeys simultaneously, the computer will escape from
any of the following Insert subcommands: H, I, X. After escaping from an Insert sub-
command, the user remains in the Editing level, while the current cursor position is
unchanged. Another way to escape from these Insert subcornmands, is by pressing the
gw&: which will shift the computer back to the Active Command level.

2.6 [H]Key

22

“H" represents Hack and Insert; that is to delete remainder of the line and to let the
user insert material at the current cursor position.

Example
Consider this line:

le@ IF A = B THEN 138 ..‘mnm...wpmn_qn_“_.@m_

If the user wants to replace A=A + 1 by A= A + B, and to delete GOTO 100, he
should first enter the Editing level, type in 25 followed by pressing the[Space-bar]
(move 25 spaces from the beginning of the line). The display should look like:

188 IF A = B THEN 156 . A = A _
Now hit the H key, type in + B, then hit NEW LINE] (back to the Active Command

level). Or hit|SHIFT]and[ESC|simultancously to return to Lditing level, then hit{L] to
display the entire line, as below:

leé IF A = B THEN 150 . A=A + &

ige _
with anything not displayed being dcleted.

2.7 B Key

“I” represents Insert, that is to allow insertion of characters starting at the current
cursor position, without altering any other part of the line.

Example
We want to insert the statement “PRINT A” between “A = A + 1”* and “GOTO 100"
in line 100. Line 100 looks like:

106 IF A =8B THEN 158 : A = A + 1 : GOTO 198
By using the EDIT mode and thej{Space-bar| Move the cursor to:

1840 IF A =B THEN 158 : A = A + 1 -

Now hit the 1 key, type in “PRINT A :”, then press the[SHIE T)Jand ESClkeys to escape
from the subcommand level. At this point we can type in[L]to list the current line.
And the display should look like:

186 IF A = B THEN 158 : A = R + 1 : PRINT A : GOTO 160
166 -
or we can hit the _mmi E|2m__8< to return to the Active Command level.

28 [X] Key

“X” represents Insert at End of Line. The command moves the cursor position to the
end of the line, and shifts the computer into the Insert subcommand. The user can
insert new materials at the end of the line, or delete part of the existing line by using

the[Backspace]key.

Example
Get into the Edit mode

> EDIT low
i08 -

24

Type in X without hitting NEW LINEikey. The line displayed should be

168 IF A = B THEN 198 : A = R + 1 : PRINT A : GOTO 196
186 .

At this point, the user may add some new material, or delete part of the existing line,

before hitting SHIFL and [ESC|

29 [L]Key

“L” represents List line. While the computer is in the Editing level, and is not
currently executing one of the subcommands H, I, X ;the L command will list the
remaining part of the line onto the display.

Example

>EDIT luw
lae

Hit[L){without hitting NEW LINLE), the display should be:

168 IF A = B THEN 150 . R = A + 1 . PRINT A . GOTO 198
100 -

The second line allows the user to do editing, while referencing the first line.

2.10 [A]Key

“A” represents Cancel and Restart. In the Editink level this command moves the
cursor back to the beginning of the line, cancels all editing changes previously made
on that line, and restores the former content of the line.

2.11 [E|Key

This command shifts the computer from Editing level back to the Active Command
level, and saves all the changes previously made. Make sure the computer is not
executing any subcommand before entering E.

2.12 [Q]Key

2.13

2.14

This command shifts the computer from Editing level back to the Active Command
level, but cancel all the changes made in the current edit mode. Just type in Q to
cancel the changes made and return to the Active Command level.

n[D] Key

“D” represents delete; the command will delete n numbers of characters right after
the current cursor position. The deleted characters will be enclosed in exclamation
marks “!” t0 show you which characters are being affected.

Example
Consider the following line:

b IF 7 = B THEN 458 : R = A + 1 . PRINT R : GOTO 16@
We first enter into the Editing level, move the cursor to the following position:
lg6 IF A = B THEN 136 . A= R + 1
Now type in 15D (to delete 15 characters); the display should look like:
leb IF A = B THER 150 : A = A + 1! . PRINT R : GO!

Then use L to list the entire line, the display should become:

16@ IF A = B THEN 150 : A = A + 1! : PRINT A : GO'TO 108
iee _
List Again:
186 IF 5 = B THEM 41S¢ . A
166 -
Now use the X key and the Backspace key to delete “TO 100”; the final outcome
should be:

1668 IF A= B THEN 450 : A = A + 1

A+ 1TC 10@

n [C] Key

*C” represents change; the command allows the user to change n number of characters
right after the current cursor position. If the number n is not specified, the computer
assumes the user only wants to change a single character.

26

2.15

Example
Consider the line

lop IF A= B THEN 158 : R = A + 1

If the user wants to change 150 to 230, he should enter the Edit mode and move
the cursor to the following position:

1e8 IF A = B THEW

Now type in 2C (change the next 2 characters), followed by 23 (new data), then hit
the [SHIFT]and [ESClkeys. List the line by hitting [T}:

168 IF A = B THEN 238 : A = A + 1
1868 _

n[Slc

The command searches for the n th occurrance of the character ¢ on that line and
moves the cursor to that position. If the n value is not provided, the computer will
search for the first occurrance of the character specified and stop the cursor there. In
case the specified character is not found, the cursor will move to the end of the line. As
usual, the computer will start searching from the current cursor position toward the
right end of the line.

Consider the following example:

160 IF A =B THEN 238 : A=A + 1
After entering the Edit mode, the display shouid look like:

100 _
Now type in 25 =, to inform the computer to search for the second occurrance of the
equal sign “'=", and the final display should be

160 IF A = B THEN 230 : A .

Now, the user may enter one of the subcommands at the current cursor position. For
example:

Type in H (hack and insert) followed by *= A + 2 (new data).

Then the line will become:

1886 IF A =B THEN 238 : R =R + 2 ..

216 n[K] ¢

The command will delete all characters up to the n th occurrance of character C, and
move the cursor to that position. Consider the following example:

1B IF A =B THEN 236 : A =R + 2
Enter into the BEdit mode:
i0a._

Now type in 1K:, to inform the computer to search for the first occurrance of the
colon *“:” symbol, then delete everything in front of it on that line.
The &mv_mw should become

168 'IF A = B THEN 238 !
The ““:”* should aiso be deleted so _nS.um in D, the display will become:
188 'IF A = B THEN 238 1!;!
Then hit the L key to list the line on the display. The line should look like

léa A =R+ 2
18@.. :

27

28

CHAPTER 3

BASIC PROGRAMMING STATEMENTS

In this chapter, we are going to discuss the program statements in our BASIC language. The
first part of this chapter covers ali the Input-Output statements available [or the computer
to communicate with the outside world; essentially through the keyboard and video display.
as well as storing to and retrieving from cassette tapes.

The second part of this chapter concerns various functions of all the programming
statements in BASIC which are acceptable to the System 80. Since it is a very large set
of statements, and each statement has its own unique and characteristics in programming,
the users are advised to study each statement with the help of the examples provided.

INPUT - OUTPUT STATEMENTS:

3.1

PRINT item list

Prints an item or a list of items onethe display. Item may be any of the following:

a) Numeric constants (numbers such as 0, 36872, 0.2, - 34)

b) Numeric variables (names respresenting numeric values, such as X, Y, Z, etc.)

¢} String constants (characters enclosed in quotes, such as “HOME COMPUTER”,
30037, etc))

d) String variables (names representing string or character values, such as A$, BS, ete))

e) Lxpressions (a sequence of any combination of the above, such as (X + 10)/Y,
“BALL” + “PEN”’, etc.)

[tems in the item list may be separated by commas orsemi-colons. If commas are used,

the cursor automatically advances to the next printing zone before printing the next

item. If semi-colons are used, no space is inserted between alphabetic items before

printing on the display, but one space is inserted before each numeric item.

Example

1A N =23+7
28 PRINT "25 + 7 IS EQUAL TO “iN
=B END

READY
>RUN

23 + 7 I5 EGUAL TO 32

Example

18 H$ = "HOME "
26 C¥ = "COMPUTER®

s8 PRINT "TRY OUR ", H$:C#
48 ERL

READY
JRUN

TRY CUR HOME COMPUTER

When commas are used to separate items, 4 columns are acceptable per line. Each

column consists of a maximum of 16 characters. Any string beyond this bound will
be printed on the next line.

Example
18 PRINT "COLUMN 1", “COLUMN 2", "COLUMN 3", "COLUMN 4", "COLUMN 5"
28 END

RERDY
2RUN

COLUMN 1 COLUMN 2 COLUMM 3 COLUMN 4
COLLIMN S _

If two or more commas are applied together, each comma will still occupy 16
characters. (Blank spaces),

Example

16 PRINT "COLUMN 1%, , "COLUMN 2v
28 END

READY
>RUN

COLUMN 1 COLUMN 2

29

30

32

Note the following examples:

16 PRINT "LINE ONE"
20 PRINT "LINE TWOQ"

36 END

READY
SRUN

I.INE ONE
LINE TWO

410 PRINT “"LINE ONE".
20 PRINT “LINE TWO"
X0 END

RERDY
>RUN

LINE UNE LINE THO

PRINT@® location, item list

This statement prints out items in the item list at the screen location specified. The
“@” sign must follow PRINT immediately, and the location specified must be a
number of value from 0 to 1023. For more details on the display map, please refer
to Appendix E.

Example

2@ PRINT @id@, "LOC 10"
If the user constructs a PRINT@ statement to print on the bottom line of the diplay,
there will be an automatic line-feed, causing everything displayed to move up one
line. To suppress this action, add a semi-colon at the end of the statement.

Example

1@ PRINT @ 993 , "BOTTOM LINE";

33

34

PRINT TAB{(expression)

Allows the user to print at any specified cursor position within a line. More than

one TAB in a PRINT statement is acceptable. However, the value in the expression
must be between 0 and255 inclusive,

Example

1@ PRINT TAB(18> "POSITION 18" TAB(ZB) "POSITION 3@
28 END

RERDY
SRUK

POSITION 1@ POSITION 5@

e N=4d
28 PRINT TAB{N> "PRS. “:N TRABCH+18) "POS. “iN+1@ TRE(N+28) "POS. "; N+20
3@ END

RERDY
JRUN

FOS. 4 POS. 14 P05 24

PRINT USING format, item list
This statement allows the user to print the data with a pre-defined format. The data
can be numetric or string values.

The format and item list in PRINT USING statement can be expressed as variables or
constants. The statement prints the item list according to the format specified.

The following specifiers may be used in the format field.

#

This sign represents the proper position of each digit in the item list (for numeric

value). The number of # signs used forms the format desired. If the format field is
greater than the numeric value (in the item list), the unused field positions to the left
of the number will be displayed as spaces and those to the right of the decimal point
will be displayed as zeros.

The decimal point can be placed anywhere in the format field established by the #
signs. Rounding off will take place if the digits to the right of the decimal point are
suppressed.

The comma — When it is placed at any position between the first digit and the
decimal point, a comma will be displayed to the right of every three digits.

31

32

Let us consider the following examples:

16 INPUT “ENTER FORMAT “:F$
208 IF F$ = “STOP" END

30 INPUT “ENTER A NUMBER ";N
40 PRINT USING F$:N

58 GOTO 18
This program requests inputs for the format field and item list (in this case with
numeric value). The program will stop only if the user inputs the word “STQOP” as the
value for F§.

Now try to run this program.

READY

>RUN

ENTER FORMAT 7#4#. #4
ENTER A NUMBER 7 12 34
1z =24

ENTER FORMAT 7##4. #4
ENTER A NUMBER ? 12 324
12 24

ENTER FORMAT 7#4. ##
ENTER A NUMBER 7 123 45
Z123. 45

ENTER FORMAT ?STOP

The % sign wil! be automatically printed out if the field is not large enough to contain
the number of digits found in the numeric value. The entire number to the left of the
decimal point will be displayed after the % sign.

Let us run tne program again.

READY

RN

ENTER FORMAT 7#4. ¥4
ENTER A NUMBER 7 12 3435
12 35

ENTER FORMAT ?STOP

Since only two decimal places were specified, the numeric value will be rounded-off
before displaying to the screen.

(i) ** Two asterisks placed at the beginning of the format field will cause all
unused positions to the left of the decimal point to be filled with asterisks.
The two asterisks will establish two more positions in the field.

(ii) 38 Two dollar signs placed at the beginning of the field will act as a floating
dollar sign. That is: A dollar sign will occupy the first position preceding the

number.

(iii) **$ Combines the effects of ** and $3. Any empty position to the left of the
number will be filled by the * sign and the $ sign will also occupy the first

position preceding the number.
Let us use the same example as before:

READY
JRUN

ENTER FORMAT Phxih. ##
ENTER R NUMBER ? 12 3

%12, 30

ENTER FORMAT 78544 #4

ENTER A NUMBER ? 12. 24
$lez. 34

ENTER FORMAT ?+ks#id. #4

ENTER fi NUMBER 7 12. 34
*ha$le 34

ENTER FORMAT ?5TOF

(iv) + When a “+7 sign is placed at the beginning or at the end of the format field,
the computer will print a + sign for a positive number or a — sign for a

negative number at the specific position accordingly.

(v) — When a “-" sign is placed at the end of the format field, it will cause a
negative sign to be printed after any negative number, and will display as a

blank for positive numbers.

Examples (using the same program as above)

RERDY
SRUN

ENTER FORMAT 7H##HH, #
ENTER A NUMBER ? 12345. 6
12, 346

33

34

(vi)

ENTER FORMRT +#4. #4
ENTER A NUMBER 7 12 34
+12 34

ENTER FORMAT 7+## #%
ENTER A NUMBER 7-12. 4
-12. 34 .

ENTER FORMAT 7#4#. #i+
ENTER A NUMBER ?7-12 34
12 34~

ENTER FORMAT 7##. #i-
ENTER A NUMBER 7 12. 34
12. 34

ENTER FORMAT 7##. #44
ENTER A NUMBER 7 123456
H123456. 9D

ENTER FORMAT 7STOF

% space %

To define a string field of more than one character. The length of the format field
will be 2 plus the number of spaces between the percentage signs. An exclamation
mark (!)informs the computer to use only the first character of the current string value.

Consider the following program example:

18 INPUT "ENTER FORMAT ";Fé#
20 IF F$ = "STOP" END

2@ INPFUT "ENTER R STRING ";C$
48 PRINT USING F#; C$.

5@ GOTD 18 B

This program performs similarily to the one we just used. The only difference is that,
the user has to input a string value instead of a numeric value for the second data

entry. This is, the variable C§.

(vii)

Now let us run the program and test its function.

READY
ZRUN

ENTER FORMART 2!

ENTER A STRING 7ABCDE
A

ENTER FORMRT 7% X
ENTER A STRING ?ABCDE
ABC

ENTER FORMAT 2?2 X
ENTER A STRING ABCDEF
RBCDE

ENTER FORMAT ?STOP

! By using the ! sign, we can also concatenate, or join strings together.

Example

18 INPUT "ENTER THREE STRINGS "iH$.B$. C$
28 PRINT "THE RESULT IS :“; :PRINT USING "!"; A% B$, C$
380 END

Now, run the program.

READY
“RUN

ENTER THREE STRINGS 7ABC, Y2, 1.JK
THE RESULT 15 :(AXI

ENTER THREE STRINGS 7R. COMPUTER, PROGRAM
THE REZULT IS :ACP

By :mEm more than one “!” signs, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the “!” signs.

35

36

35

Try to follow this example:

1@ INPUT "ENTER THREE STRINGS “iA$.EB$.($
28 PRINT “THE RESULT IS :"i :PRINT USING "! ! !";RiB;C$
2@ END

RERDY
>RUN

ENTER THREE STRINGS ?KYZ, FGH. REC
THE RESULT IS X F A

ENTER THREE STRINGS 7R, COMPUTER, PROGRAM
THE RESULY IS :AC P

INPUT item list

This statement causes the computer to suspend execution of a program and wait until
the user has input the specified number and type of values through the keyboard.
Input values can be string or numeric according to the variable type. The items (if
more than one) in the list must be separated by commas,

Example

ie [NPUT A$.B# A, B

This statement permits the user to input two string values, followed by two numeric
values. The input sequence must be consistent. When the computer executes this
statement, it sends a signal onto the display:

And waits for the inputs. The user may enter all four values at once (separated by
commas). In this case, the inputs could be as follow:

orange, apple, 59,47 [NEW LINE

The computer then assigns the values accordingly :

A$ = "ORANGE"
B$ = "APFLE"
R =59
B =47

The other way to input those values would be by entering the items on separate
lines. In this way, the computer will remind the user to input the next data for the
remaining variables by displaying:

7

Until all variables are set, the computer then advances to the next statement. Input
must be compatible to the variable type specified. In other words, the user should not
input a string value to a numeric variable. If such an invalid entry occurs, the com-
puter will send the message:

7 REDO

Indicating the input does not match with the current variable type. However, the
computer gives the user a second chance to input the correct data starting with the
first value expected by the INPUT statement.

Example

1@ INPUT A$. A
26 FRINT A% A
%@ END

RERDY
>RUN

7 STRING, 18
STRING 16

37

RERDY
e
7 THIS IS A STRING, 4%

THIS 1% A STRING 12 5

READY
SRUN

7 ABCD, 1JK
7 RELO

¥ ABCDE
7728

RECDE 23

If an input string consists of blanks, the entire string must be enclosed by quotes.

In order to provide a clearer indication to the operator, the user may include a
“prompting message’ in the INPUT statement. This helps to input correct data type

to each variable. The prompting message must immediately follow INPUT, enclosed
in quotes, and followed by a semi-colon.

Example

188 INPUT "IMNPUT ITEM MAME AND QUANTITY "iN$.Q

RERDY
ZRUN

INFUT ITEM NAME AHD QUANTITY 7

36

37

DATA item list

This statement allows the user to store data inside the program and to access them
through READ statements. The item list will be accessed by the computar sequent-
ially, starting with the first item in the first DATA statement, and ending with the last
item in the last DATA statement. Each item in the item list may be a string or a
simple numeric value. Just like entering data from the keyboard, any string value
consists of bianks, colons, commas, must be enclosed in a pair of quotes.

The order of values in a DATA statement must match up with the variable types in
the READ statements. DATA statements may appear anywhere in a program.

Example

i READ R$ BF.C. D

28 PRINT A%.BH. 0D
5@ DATA "CHRRACTERS", "A LONG SENTENCE"

4@ DATA 28, 137. 54
S8 END

rEHDY
U
CHRRACTERS A LUNG SENTENCE 29 13754

READ item list

This statement instructs the computer to read in a value from a DATA statement and
assign that value to the specified variable. The values in the DATA statement will be
read sequentially by the READ statement. After all the items in the first DATA
statement have been read, the next READ statement encountered will access the
second DATA statement for the next variabie. If there is no more value in the DATA
statement available for a READ statement an Out-of-Data error will occur.

39

Consider the following example:

16 READ C#

20 IF C$ = "EOF" GOTO €@

3B RERD &

48 PRINT C$.@

5@ GOTO 18

68 PRINT:FRINT "END OF LIST. “:END
79 DATR BOOKS, 4, PENCILS, 12

£6 DATR BALL FENS, S, COMPASSES. 2
96 DATA GLASSES. 5. EOF

READY
ZRUN

BOOKS
PENCILS
BALL PENS
COMPASSES
GLRSSES

AP £

END OF LIST

3.8 RESTORE

This statement allows the next READ statement to access the first item in the first
DATA statement, and the subsequent items.

Example

18 READ A$. A

20 PRINT R$. A

38 RESTORE

49 REFD E4.B

5@ FRINT A4, A.B%.B

€0 DRTA "JOHN WHITE", 25, "JOE HUDSON', 32, "BILL RDRMNS®, 38

78 END

3.9

READY

YRUN
JOHN WHITE 23
JOHN WHITE &5 JOHN WHITE 25

This program shows that the RESTORE statement not only allows the READ state-
ment to access the first item in the first DATA statement, but also it has no effect on
the previous assignments.

PRINT # -- cassette number, item list

This statement prints the values of the specified variables onto cassette tape. The
recorder must be properly sct in record mode before executing this statement. For
more detail, pleasc consult the User’s Manual. As the System 80 can control up to
two cassette drives, the user should specify which drive is intended.

Example

19 A$ = "BEGIN TRAPE"

28 B = 3 1416

38 C =56

48 D§ = "DRTA"

98 PRINT #-1, A$. B C. D$, "END OF FILE"
68 END

This program assigns various data to variables AS, B, C, and D$ respectively. then
PRINT these data on tape through cassette drive No. 1. Note that the string constant
“END OF FILE”, can be printed on tape as well as variables. Once the data are stored
on tape, the user may input these data into the computer again, just like playing
music tapes with a cassettc. Please note that the INPUT statement must be identical
to the PRINT statcment in terms of number and types of variables. However, the
variable names may be different in any case.

Imporiant:

The total number of characters respresented in all the variables mentioned in the “item
list” must not exceed 255: otherwise anything after the 25S5th character with be
truncated or lost.

41

42

Example

18 PRINT #-1.R$.B$, C$. D, E¥

If the total number of characters in A$, B$, C$, D$, are 250 and ES has a length of
35 characters, then E$ will not be saved on tape. And if the user tries to INPUT the
value of E, an OQut-of-Data error will occur.

3.10 INPUT # — cassette number, item list

This statement tells the computer to input the specified number of values stored on
the cassette tape and to assign them to the variables. The user must specify the cassette
drive number from which data is expected.

Example

18 INPUT -1, A% B C, 0¥

This statement inputs data from cassette drive number 1. The first value is assigned to
AS$, the second value to B, etc. The cassette deck must be in PLAY mode. Once the
computer executes this statement, the cassette drive will be turned on, and when the
input has finished, the cassette drive will be turned off before the computer goes to
the next statement.

K a string is encounted when a numeric value is expected by the INPUT statement, a
bad file data error will occur. An Out-of-Data error will also occur if there is not
enough data items on the tape for all the variables in an INPUT statement.

PROGRAM STATEMENTS

3.11 DEFINT letter range

Variable names that begin with letters specified within the letter range, will be treated
and stored as integers. Howcver, a type declaration character (refer to the Introduc-
tion)} can over-ride this type definition. Defining a variable name as an integer not
only saves memory space, but also saves computer time, because integer calculation is
faster than single or double precision calculation. Note that integers can only take on
values between — 32768 + 32767 inclusive.

Example

16 DEFINT A. Y. 2

After the computer has executed line 10, all variables beginning with the letters X, Y,
or Z will be treated as integers. Therefore, X2, X3, YA, YB, ZI, Z] will become
integer variables. Except that X1 7 , X2 £ , YB 1+, will be still double precision
variables, because type declaration characters always over-ride DEF statements.

Example

18 DEFINT R - D

Causes variables beginning with letter A, B, C, or D to be integer variables.

Note that DEFINT can be placed anywhere in a program, but it may change the
meaning of variable references without type declaration characters. Therefore, it is
normally placed at the beginning of a program.

43

3.12 DEFSNG letter range

3.13

Variable names that begin with those letters specified within the letter range, will be
treated and stored as single precision variables. However, a type declaration character
can over-ride this type definition.

Single precision variables and constants are stored with 7 digits of precision and
printed out with 6 digits of precision. All numeric variables are assumed to be

single precision unless otherwise specified. The DEFSNG statement is primarily used
to re-define variables which have previously been defined as double precision or
integer.

Example

18 DEFSNG A-D. Y

Causes variables beginning with the letter A through D, or Y to become single preci-
sion. However, A # would still be a double precision variable and Y% still be an integer
variable.

DEFDBL letter range

Variable names that begin with those letters specified within the letter range, will be
treated and stored as double precision. However, a type declaration character can
over-ride this type definition. Double precision allows 17 digits of precision, while
only 16 digits are displayed when a double precision variable is printed.

Example

10 DEFDBL M-P:G

Causes variables beginning with one of the letters M through P, or G to become
double precision.

3.14 DEFSTR letter range
Variables that begin with those tetters specified within the letter range, will be treated
and stored as string.
However, a type declaration character can over-ride this type definition. Each string
can store up to 255 characters, if there is enough string storage space cleared.
Example

10 DEFSTR A-D

Causes variables beginning with any letter A through D to be string variables, unless a
type declaration character is added. Therefore, after the execution of line 10, the
assignment B3 = “A STRING” is valid.

315 CLEARn
This statement sets all variables to zero. If number n is specified, the computer sets n
bytes of space for string storage. Everytime when the System 80 is turncd on, 50
bytes of space are automatically cleared and reserved for strings.
The CLEAR statement becomes critical during program execution, because an Qut of
String Space error will occur, if the amount of string storage cleared is less than the
greatest number of characters stored in string variables.
Example

18 CLEAR 1800

Clear 1000 bytes of memory space for string storage.

3.16 DIMname(diml,dim2........ ..dim n)

The statement defines the variable name to be an array or list of arrays. The number
of elements in each dimension may be specified through dim 1, dim 2, etc. If dim n
is not specified, 11 elements in each dimension is assumed in each array. The number
of dimensions is imited only by the memory size available.

45

Example

18 DIM ACS), B(3. 40, C(2.3.3)

This statement defines the one dimensional array with 6 elements {from Q to 5); the
two dimensional array B with 20 elements (4 x 5); the three dimensional array C with
48 elements (3 x 4 x 4).

DIM statements may be placed anywhere in a program, and the number of subscripts
may be an integer or an expression.

Example

18 INPUT “NUMBER OF TIMES "N
28 DIM ACN+2, 4

The number of elements in array A may vary according to N.
To re-dimension an array, the user must use a CLEAR statement either with or
without the argument n. Otherwise an error will occur.

Example

18 X2y = 13. 6

20 PRINT “THE SECOND ELEMENT IS " K(2)
20 DIM X{15>

48 PRINT A<(2)
S8 END

RERDY
JRUN

7 DD ERROR IN 38

46

3.17 LET variable = expression

This statement is used to assign a value to a variable. The word LET is not required
in assignment statements by the System 80 BASIC interpreter. However, the user
may use the word LET in order to make the program compatible with other systems.

Example

ie LET A = 5. &7

20 B = 20

38 5% = "CHARACTERS"
48 LET D% = D% + 1
50 PRINT R, BX 5%, D
68 END

READY
RUN

3. 67 20 CHARACTERS i

In all the assignments above, the variable on the left of the equal sign is assigned with
the value of the constant or expression on the right side. All these statements are
acceptable,

3.18 END

This statement causes a normal termination of program execution. The END state-
ment is primarily used to cause execution to terminate at some point other than the
logical end of the program.

Example
5 B=23X:C=14
IBA=C+ B
28 GosUB 7@
D =K+ vy

48 PRINT "THE RESULTS ARE "
58 PRINT A, D
68 END

W

48

3.19

78 X = 5@
88 Y =H=*X
98 RETURN

THE RESULTS RRE . 17 66

The END statement in line 60 prevents the computer from executing into line 70.
Therefore the subroutine that staris at line 70 can be accessed only by line 20.

STOP

This statement is essentially a debugging aid. It sets a break point in a program during
execution, and allows the user to examine or modify variable values. A message will
be printed out as “BREAK IN line number” once the computer executes the STOP
statement. The Active Command CONT can then be used to re-start execution at the
point where it breaks.

Example

5 INFUT B.C
BAH=B+C

208 5TOP

X =(H+DA7S
48 IF ¥ < 6 GOTO 7@
S8 PRINT A.B. C

68 PRINT ¥

7@ END

READY

#RUH

T d

BREAK IN z&
EERDY
>PRIMT A

B

READY

FCORT

& e 4
8 lesil

The STOP statement allows the user to examine the value of A before line 30.

3.20 GOTO line number

This statement transfers program control to the specified line number. If used in-
dependently, an unconditional branch will result. However, test statements may
precede the GOTQ statement to create a conditional branch.

Example

ia
28

16
45

39C=A+B

4BC=C*34

50 GOTO 168

60 . .

70 .

86 .

98 .

168 PRINT "A =";f, "B="3B, "C=";

116 END

REFDY

SRUN

A= 10 B= 45 C= 187

o@D
[}

When line 50 is executed, control will unconditionally jump to line 100,

Example

18 IF AR = 2 GOTO 120

When line 10 is under execution, if A equals to 2 then control will jump to line 120,
otherwise it will just go to the next statement.

The user may use GOTO in the Active Command level as an alternative to RUN
command. GOTO line number causes execution to begin at the specified line number,
but without the automatic CLEAR.

49

50

3.21 GOSUB line number

Transfers program control to the specified line number where a subroutine starts.
Ouly if the computer encounters a RETURN statement, it will then jump back to the
statement that immediately follows the GOSUB. Just like GOTO, GOSUB may be
preceded by a test statement, such as:

IF A= B THEN GOSUB 100

Example

1@ PRINT "MRIN PROGRAM. *
28 GoSUB 50

3@ PRINT "END OF PROGRAM. "
48 END

2@ FRINT "SUBROUTIME. “

48 RETURN

READY

RUR

MAIN PROGRAN.
SUBROUT INE.
END OF PROGRAM.

3.22 RETURN

3.23

This statement ends a subroutine and returns control to the statement that immedi-
ately follows the GOSUB. An error will occur if RETURN is encountered without

execution of a matching GOSUB.

ON n GOTO line number list

This statement allows multi branching to the line numbers specified according to the
value of n. The general format for ON n GOTO is:

ON expression GOTO 1st line number, 2nd line number, ., ., mth line number.

The value of the expression must be between 0 and 255 inclusive.

When ON-GOTO statement is executed, first, the expression is evaluated and the
integer portion, that is INT (expression) is obtained. Then the computer assigns this
integer to N, and counts over to the Mth element in the line number list, and then
branches to the line number specified by that element. If N is greater than the avail-
able line number M, the control fall through to the next statement in the program.

If the expression or number is tess than zero, an error will occur.

The line number list may contain any number of items,

Example

18 INFUT “ENTER COMMAND ";C
2@ ON C GOTO 188, 129, 138, 158, 139

@ PRINT "END OF FROGRAM. " :END

188 PRINT “THIS IS LINE 1@b“:GOTO 18

128 PRINT "THIS IS LINE 128" :G0OTO 18

123 PRINT "THIS IS LINE 13@":GOTO 14

158 PRINT "THIS IS LINE 156" :GOTO 18

READY

FRUN

ENTER COMMAND ? 5

THIS 15 LINE 128

ENTER COMMAND 7 4

THIS IS LINE 156

ENTER COMMAND 7 1

THIS 1S LINE 160

ENTER COMMAND ? 2

THIS 1S LINE 128

ENTER COMMAND 7 3

THIS IS LIKRE 134

ENTER COMMAND ? @

END OF PROGRAM

RERDY

ARUK

ENTER COMMAND 7 4

THIS IS LINE 158

ENTER COMMAND ? 6

END OF FROGRAM.
The ON-GOTO statement is a more elegant way of achieving the some result
than the equivalent IF-GOTO statements:

i IF C = 1 GOTO 168
2@ IF C = 2 GOTO 120
2@ IF C = X GOTO 1z@
48 IF G = 4 GOTO 156
8 IF € = 5 GOTO 136
& IF C <1 0RC >S5 GATO 7@ :REM GO TG THE NEXT STHTEMENT.

52

3.24 ON n GOSUB line number list

Works like ON n GOTO, except control branches to one of the subroutines specified
by the line numbers in the line number list.

Example
18 PRINT " % FUNCTION SUBROUTINES "
28 PRINT " 1. FUNCTION R
38 PRINT " 2. FUNCTION B
48 PRINT 2. FUNCTION C"

58 INFUT "ENTER 1. 2. OR 3 "iN
58 ON N GOSUB 156, 166, 250
78 END
186 PRINT "THIS IS FUNCTION B" . RETURN
158 PRINT “THIS IS FUNCTICM A" : RETURN
256 PRINT "THIS IS FUNCTION C" : RETURN
REHDY
RUN
4k FUNCTION SUBRCGUTIMES ok
"1, FUNCTIOMW A
2. FUNCTION B
3 FUNCTION C
ENTER 1, & OR 2 ? 2
THIZ IS FUNCTION B
READY
FREUN
44 FUNCTION SUBROUTINES s
1 FUNCTION F
2. FUNCTION E
3. FUNCTICN C
ENTER 1, 2, OR 3 7 1
THIS IS FUNCTION A

3.25 FOR name = expression TO expression STEP expression
NEXT name

These statements form an iterative loop so that a sequence of program statements
may be executed over a specified number of times.

The general form is:

FOR counter = initial value TO final value STEP increment.

*

®
L3
Statements
*
*
*

NEXT counter

In the FOR statement, initial value,final value and increment can be constants, vari-
ables or expressions. The first time the FOR statement is executed, these three are
evaluated and the values are saved; if these values are changed inside the loop, they
will have no effect on the loop’s operation. However, the counter value must not be
changed or the loop will not operate normally.

The FOR-NEXT ioop works as follows: the first time the FOR statement is executed,
the counter is set to the “initial value”, Execution proceeds until a NEXT statement
is encountered. At this point, the counter is incremented by the amount specified in
the STEP increment. If STEP increment is not used, an increment of 1 is assumed.
However, if the increment has a negative value, then the counter is actually
decremented.

The counter is then compared with the final value specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the next statement.(if increment was anegative
number, locop ends when counter is less than the final value.)

If the counter has not vet exceeded the final value, control passes back to the first
statement after the FOR statement.

Example

16 FOR K = & TO 1 STEF & 3
£8 PRINT "THE VYRLUE OF K :'";K
38 HEXT K

48 END

RERDY
>RUN

THE YALUE OF K . @
THE YALUE OF K : . 2
OF K : .6
OoF K: .9

THE VRLLUE
THE ALUE

When K = 1.2, it is greater than the final value 1, therefore the loop ends without
ever printing 1.2.

53

Example

19 FORN=5T0 @
2@ PRINT "THE VALUE OF N :";N

3G NEXT N
48 END

RERDY
>RUN

THE YALUE OF N . 3

18 FOR N = 5 TO & STEP ~1

28 PRINT “"THE VALUE OF N N
38 NEXRT N

48 END

READY
ZRUN
THE YALUE OF N
THE YALUE OF N
THE VALUE OF N
THE ¥ALUE OF N

THE YALUE OF N
THE ¥ALUE OF N

Since no STEP was specified, so STEP 1 is assumed. N is incremented the first time,
and its value becomes 6. Because 6 is greater than the final value O, the loop ends.
This is remedied by adding STEP-1, as you can see.

Example

@ P

18 FOR R =8 T0 2

20 PRINT "THE VALUE OF R :*A
3@ NEXT

40 END

READY

FRUN

THE ¥ALUE OF A
THE VALUE OF A
THE VALUE OF R
THE VALUE OF A

WrePe o

Note here that instead of using NEXT A in line 30, you may simply write NEXT.
However, this can lead to trouble if you have nested FOR-NEXT, loops.

54

Here is an example of nested loops, showing how it is advisable to identify the
counter variable in each NEXT statement:

1o
28
9
48 FOR N =1 + 41 7O J + 1
36 PRINT "FIRST LCOP"
6d FOR M =1 TOK
7a FRINT " SECOMD LOOP™
ge HNERT M
98 NEXT N
16@ END
READY
#RUn
FIRST LOGP

SECOND LOOP

SECOND LOGP

SECOND LOOF

FIRST LOOP
SECOND LOOP

SECOND LOOP
SECOMD LOOP

T A
in
) P

3.26 ERROR Code
This statement is used for testing an ON ERROR GOTO routine. When the ERROR
code statement is encountered, the computer will proceed exactly as if that kind of
error has occurred.

Example

38 ERROR 1

?NF ERROR IN 38

For the definition of each error code, please refer to Appendix B.

65

56

3.27

ON ERROR GOTO line number

This statement allows the user to set up an error-trapping routine to recover a pro-
gram from an error and to continue, without any break in execution. Without this
statement, the computer will stop execution and print out an error message, once it
encounters any kind of error in the user’s program. Normally, the user has a particular
type of error in mind when an ON ERROR GOTO statement is used.

For example, suppose that a program performs some division operations and the user
has not ruled out the possibility of division by zero. The user could write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example

SB=145 : L =8

16 ON ERROR GOTO 120

20 A = B/C

38 PRINT A,B.C

4@ END

120 PRINT “DIVIDED BY ZERQ !!"
136 END

RERDY

~RUK

PIVIDED BY ZERO !!

In this example, C has a value of zero, so a divide-by-zero error will occur when the
computer attempts to execute line 20. But because of line 10, the computer will
simply ignore line 20 and branch to the error-handling routine beginning at line 120.
Please note that the ON ERROR GOTO statement must bhe executed before the
error occurs, otherwise it has no effect. Note also that the error handling routine
must be terminated by a RESUME statement.

3.28 RESUME line number

This statement terminates an error handling routine by specifying where normal
execution is to resume.

RESUME 0 or RESUME without a line number causes the computer to return to the
statement in which the error occurred. If RESUME is followed by a line number, it
causes the computer to branch to the line number provided.

RESUME NEXT causes the computer to branch to the statement following the point
at which the error occurred.

Example

1é OM ERFOR GOTO @

&8 FRINT “"SIMPLE DIYISION,

B INPUT "ENTER TWO NUMBERS "iFA.B

40 IF A = 8 END

L = AR g
68 FRINT "THE QUOTIENT IS “;iC

78 GOTo za

58 FRINT "ATTEMPT TO DIVIDE BY ZERC '
98 FRINT "TRY AGRIN. .. "

18E RESUME Z@

mERLDY
~RUN

SIMPLE CIVISION

ENTER TH(NUMBERS T &6 » 2
THE QUATIENT IS =

SIMPLE DIVISION

ENTER TWO NUMBERS 7 7, X
THE QUOTIENT IS 2 3333
SIMPLE DIYISION

ENTER TWO HUMBERS * 5 . @
RTITEMFT TO DIVIDE 8Y ZERO !
TRY AGAIN. ..

SIMFLE DIVISION

ENTER THO NUMBERS 2 2 . 4
THE QUOTIENT IS 2 23
SIMFLE DIYISION.

ENTER TWO NUMBERS 7 & ., @

RERDY

57

58

3.29

330

REM

REM represents remarks. This statement informs the computer that the rest of the
line only consists of comments, and should be ignored. The statement also allows
the user to have more comments in his program for befiter documentation. If REM is
used in a multi-statement program line, it must be the last statement.

Example
19 REM +* VARIABLE REPRESENTATIONS *
20 REM * A = AMOUNT *
38 REM % B = NUMBER OF ITEMS *
48 REM & C = UNIT COST *
58 REM * *

68 R =B *C . REM #x RAMOUNT = NO. OF ITEMS X UNIT COST

IF expression action-clanse

This statement instructs the computer to test a logical or relational expression. If
the expression is TRUE, control will proceed to the “action” clause immediately
following the expression. If the expression is False, control will jump to the matching
ELSE statement (if there is one) or down to the next program line.

In numerical terms, if the expression, has a non-zero value, it is always equivalent to a
logical true.

Example

16 INPUT "ENTER ft YALUE <(MAX 28> ";A

28 IF A > 28 GOTO &A@

EB A=A %X 1416 * 2

48 PRINT "THE CIRCUMFERENCE IS :";A

50 £ND

€@ PRINT "NUMBER TOO BIG ! <MAX. 28>“: GOTC 1@

READY
“RUN

ENTER A YALUE (MAX. 28> ? 24
NUMBER TOO BIG ! (MAX. 2@)
ENTER A VALUE (MAXK. 20> ? 18
THE CIRCUMFERENCE IS : 413 898

331

3.3

In this example, if A is greater than 20 then a warning is printed and another input is
expected. However, if A is equal to or less than 20, the computer will go to the next
line and compute the value of A, without passing through the warning message and
the GOTO statement,

Example

120 INPUT A: IF A = 10 AND A > B THEN 160

12@ INPUT A: IF A = 10 AND A > B GOTO 168

The two statements above have the same effect.

THEN statement or line number

Initiates the “action clause™ of an IF — THEN type statement. THEN is optional
except when it is used to specify a branch to another line number, as in IF A > D
THEN 100. THEN should also be used in IF — THEN — ELSE statements.

ELSE statement or line number

This statement must be used after the IF statement, and acts as an alternative action
in case the IF test fails,

Example

16 IF A = 1 THEN 68 ELSE 44

In this example, if A = 1 then control branches to line 60, otherwise it branches to
line 40. If the ELSE clause is not used and A is not equal to 1, the computer will go
to the next statement instead of branching to line 40.

IF-THEN-ELSE statements may be nested, but the number of TFs and ELSEs must
match with each other.

59

60

3.33

Example

18 INPUT "ENTER THREE MUMBERS "; X, Y. Z
28 PRINT "THE LARGEST NUMBER IS :";

38 IF XK C Y OR X € 2 THEN IF ¥ < 2 THEN PRINT 2 ELSE FRINT ¥ ELSE PRINT X
48 END

RERDY

“RUN

ENTER THREE NUMBERS 7 3@ , 75 , 7%

THE LARGEST NUMBER IS : 75

This program accepts three numbers and prints out the one that has the highest value.

LPRINT

Prints a file onto the printer. This command (and statement) functions similar to a
PRINT statement (print on the display). If the line printer is not properly
connected, the computer will enter a dead loop and will wait to print the first
character. This situation can only be resolved by tumning the printer on or hitting the

RESET button.

14 FOR X = 1 TO @ STEP -6 25
20 LPRINT "THE VALUE OF X :"ix
38 NEXT X

4@ END

READY

YR

THE VALUE OF X : 1
THE YALUE OF X : .79
THE VALUE OF X : .5
THE VALLE OF ¥ : .25
THE VALUE OF X : @

PROCESSING ARRAYS

An array is simply an ordered list of data. Both alphabetic and numeric arrays are acceptable
by the System 80. However, the data type of an array must be consistent. The concept
of arrays is very important in computer programming, therefore the user should try to
understand the examples in this Chapter.

Suppose John Washington is studying in a college. There is a three story building which has
four classrooms on each floor and each room has 45 seats.

John is taking a history course. There are only 36 students in his class. Now, let us look
through the name list of John’s class.

NAME LIST

=

Mary Adams

(3]

Jimmy Brown

78]

Henry Cox

36. John Washington

In order to find a specific person in the list, we just read the list from top to bottom or from
bottom to top; however, the method of searching by name is not very important here.

The most important issue is how we can find a person in the list by referring his number
only. In the list mentioned above, the 1st person is Mary Adams, the 2nd person is Jimmy
Brown, etc. The numbers give us a systematic way to find a person.

61

62

If we use a computer to record this list, we may assign each name in the list to a unique
variable, as the following.

18 hgs
28 Nis
38 N2$
48 |
30 .
6a .
a8 .
80 .
56 .
108 NS$= "TOM HUDSON"

iio |

128 .

130 .

148 NZ$ = "JOHN WASHINGTON"

"MARY RDARMS™
"JIMY BROWN"
"HENRY COX"

This is a time consuming and inefficient method; besides, what happens if there are 37
students in the class? ‘

Obviously, we need to use a variable name starting with another letter, such as M1$, etc.
Another way, also the better way to handle this list is by using an array. We first define an
array AR$ of 45 elements (for there arc 45 seats), then assign those names to each element.

Example

3 CLERR 1008@ : REM CLEFR 1008 BYTES FOR STRING STORAGE.
18 DIM AR$C(44)> REM ARRAY AR$ HAS 45 ELEMENTS.

<9 FOR N =@ TO 44 : DREM LOOPS 45 TIMES

3@ INFUT "ENTER THE NAME OF THE STUDENT ";PAR$C(N)

48 REM ASSIGN THE NAMES TO ERCH ELEMENT IN THE ARRRY.

58 NEXT N

g6 END

This program accepts 45 names and stores them in the

program, the following should be true.
Element AR$ (Q) has the value of “Mary Adams”
Element AR$ (1) has the value of “Jimmy Brown™
Element ARS$ (2) has the value of “Henry Cox™

-

Element AR$ (36) has the value of *“John Washington”

Provided the inputs are correct, of course!
Now, if we want to print out the entire list, we may use this program.

9

1@
15
20
38
48

CLEAR 1068 REM CLEFR 16@@ BYTES FOR STRING STORAGE.

DIM AR$<44> : REM ARRAY AR$ HRS 45 ELEMENTS.
REM s INPUT ARRAY SECTION sk

FOR N =@ TG 44 : REM LOOPS 45 TIMES
INPUT “ENTER THE NAME OF THE STUDENT “; AR$(N)
REM ARSSIGN THE NAMES TO ERCH ELEMENT IN THE ARRAY.

array ARS. After executing the

S8 NEXT N
55 REM #k PRINT ARRAY SECTION k%
g FOR N = 8 TO 44 : REM LOOPS 45 TIMES.

78 PRINT RR$(N) REM PRINTS THE N TH ELEMENT OF THE. ARRAY.

88 NEXT N
28 END

Instead of the following statements.

16 PRINT Né$
2@ PRINT Nis
38 PRINT Nz¢
48 |
e .
€a .
e .
&8 PRINT NS$
%8 .
198 .
118 PRINT NZ#%
120 .
136 .

By now, the user should have some feeling of how powerful arrays could be.

63

Suppose the teacher in John’s class wants to set up a seat plan by rows and colums. Since
there are 6 columns, then only 6 rows of seats are needed.

5
4
3
ROW
2 HENRY JIMMY
cox BROWN
4 JOHN
WASHINGTON
MARY

0 ADAMS

o 1 2 3 4 5

COLUMN

The four students we always mentioned are seated as in the plan above. Since they arc
not seated according to the name list, we need another method to access the seat plan. For
example, if the professor tries to see if John Washington is absent or not, he has to look
through the room and find out whether the seat at row 1, column 3 is empty or not. The
professor has to scarch for row 2 column 0 for Henry Cox as well. Actually, the computer just
works the same as the teacher does. We may map this seat plan into a two dimensional array
named SP$ (5, 5), the first 5 is for row, and the second 5 is for column. In case we want to
call Jimmy Brown, we must reference SP$ (2, 3), that is row 2 column 3.

Now suppose we want to print the seat plan in a table form, we may use the program below:

18 CLEAR 16@8: DIM SP$(5.5) : REM SP# IS AR 6 X & RRRAY.
2B FOR R =3 70 @ STEP -1

30 REM SET R LOOP TO PRINT FROM ROW S TO ROW @.
4@ FOR C =8 T0 5

58 REM SET A LOOP TO PRINT YHE NAMES IN ERCH COLUMN.

&0 PRINT SP#C(R,C>, : REM PRINT THE NAME AT ROW “R” COLUMN “C-.
78 NEXT C

50 PRINT . REM CARRIAGE RETURN

98 NEXT R

168 END

This program prints a seat plan in a table form. It starts with the last row in the class, and
ends with the first row. The program first initializes. R = 5, C = { then prints the value of
the elements.

SP$(35, @); SP$(5, 1); SP$(5, 2); SP$(5, 3); SP$(5, 4}, SP$¢5, 5)

At this point, the value of C becomes 5, the computer jumps out of the loop “C* and prints
a blank line as on line 80 and slips to the next line. The computer passes line 70 and loops
back to line 20 and then R = 4; the computer resets C = 0 on line 40 and prints the value of.

SP$(4, 8>; 5P$(4. 12; SP$¢4, 2); SP$(4, 3); SP$(4, 435 SP$(4. 5>

The process repeated until R = -1, and the program stops. The final output will have values
of the elements in the following order.

SPHCS, B SP$(S,: 107 SP$(5, 2); SP$(S, 3)) SP$(5, 4); SP$(5, 5>
SP$(4, 8); SP$<4, 12; SP$<4, 27; SP$(4, 3); SP$(4, 4); SP$(4, 3)

SP$(3, 0); SP$(3, 17; SP$(3, 27; SP$(3, 2); SP$(3, 43, SP$(2. 5D
SP$¢2, 0); SP$(2, 1); SP$(2, 2); SP$(2, 3): SP$(2, 4); SP$(2,)

SP$(1, @); SP$CL,1); SP$C4, 22; SP$(1, 305 SP$<1, 40, SP$<1, 5)
SP$<B, 8); SP$(@, 1); SP$(B, 2); SP$(8, 3); SP$(0, 4, SP$(0, 5)

66

By using this two dimensional array, we can locate the exact position of any student in a
class. But how can we locate another student who siis at the identical position as John
Washnighton, but in the next class? Of course, we need to mention which class or which
room number that the student is in. In this case, we need another dimension to describe a_
specific student’s location. Remember, there are a total of twelve class rooms in the
building. We have different ways to solve this problem. The first method is to assign a
nhumber ranged from 1 to 12 to each room. Or we may distinguish them by floor number.
That is room 1 on the 1st floor, room 2 on the 1st floor, , room 1 on the 3rd floor,

. «.....ctc. The first method requires only one additional dimension, whereas the second
method requires two additional dimensions.

Say John's classroom is the 3rd room on the second floor. By using the first method, we
may locate John by referring SPS (N, R, C) where N represents the number of theroom. R
represents row number and C represents column number. To be more specific, John sits at
SP$ (7, 1, 3) that is room number 7, row number 1, column number 3. However, by using
the second method, we need to mention SP$ (F, N, R, C) where F represents floor number,
N represents the room number, R represents row number, C represents column number. To
locate John, we need to refer to SP$ (2, 3, 1, 3), that is the 2nd floor. room number 3, row
number 1, column number 3.

The number of dimensions may increase if we try to accept and classify more students into
this set. If we try to identify some other students in another building, we need another
dimension to define which building. If we consider other colleges, yet we need another
dimension to describe which college.

In every System 80, the number of dimensions in an array is only limited by the memory
space available in the computer.

CHAPTER 5

STRING HANDLING

String operations are the essence in data processing.
It is obvious that if a computer cannot handle string operations, it is only a super powerful

calculator. Based on this fact, the System B0 allows many useful string operations in
addition to arithmetic operations.

In this chapter, we will discuss various string functions that are acceptable in our Extended
Basic language.

51

String Comparison

By using a relational operator, two strings may be compared for equality or alphabetic

precedence. If they are checked for equality, every character, including any leading or
trailing blanks, must be identical otherwise the test fails.

Example

led IF A% = "YES" THEN 258

Strings are compared character by character from left to right. Actually, the ASCII
code representations for the characters are compared. A character with the lower
code number is considered to precede the other character. In other words, “AB”
precedes “AC”, When strings of different lengths are compared, the shorter string is
precedent even if its characters are identical as those in the longer string. Therefore,

“B” precedes “B ', The following relational operators may be used to compare
strings.

Fas
-
“
It
-
1
i
b
.
i

67

5.2 String Operation

Basically, there is only one string operation, that is concatenation which is represent-
ed by the plus sign “+”.

Example

16 51§ = "THE SUN Is"
28 S2§ = " SHINING"

30 G3% = . "

48 C$ = S1§ + S2% + S3I + 526 + SIE + 52§ + V.0
50 PRINT C#

68 END

REREY

RN

THE SUN IS SHINING, SHINING, SHINING.

I

5.3 ASC (string)

This statement retums the ASCII code (in decimal) for the first character of the
specified string. The string specified must be enclosed in parentheses. A null-string
will cause an error to occur.

168 PRINT “THE #SCII CUDE FOR “H” IS:*: ASLCC"H")

165 5% = "HOME" :PRINT "THE STRIRG IS:":5#

11& FRINT "THE RECII CODE FOR THE FIRST LETTER IS:";RSC(SE:
128 £END

REROY

JRUN

THE A3CIT CORE FOR “HT IS V2

THE STEING IS:HOME

THE RSCII COLE FOR THE FIRST LETTER IS: 72

Both lines will print the same number.

A complete set of control, graphics, and ASCII codes is listed in appendix C.

68

54

5.5

56

CHRS (expression)

This statement works as the inverse of the ASC function, that is to return the
character of the specified ASCII, control or graphics code. The argument may be any
number from 0 to 255, or any variable expression with a value within that range. The
argument must be enclosed in parentheses.

160 PRINT CHR$(Z3> . REM PRINT R 7!7 SIGN

LEFTS (string, n)

This statement returns the first n characters of the specified string. The arguments
must be enclosed in parentheses. String may be a constant or an expression, and n
may be a numeric expression.

Example

18 A% = "ABCDEFG"
28 Bt = LEFT$(AS 4)
3@ FRINT EB$

4 END

RERDY

SRUN

HECD

RIGHTS (string, n)

Returns the last n characters of a string. Both string and n must be enclosed in paren-
theses. String may be a string constant or variable, and n may be a numerical constant
or variable, If the length of the string is less than or equal to n, the entire string is
returned.

Example

18 A% = "ABCDEFG"
20 B§ = RIGHT$(A% 20
6 PRINT B

48 END

READY

2RUN

EFG

1

69

70

57

5.8

LEN (string)

Returns the length value of the specified string. The string may be a variable,
expression or constant and must be enclosed in parentheses.

Example

18 A¢ = "RECDEFG"
2B PRINT "LENGTH OF THE STRING: "; LEN(R$)

3@ END
REFADY
SRUN

(LENGTH OF THE STRING: 7

MIDS$ (string, p, n)
Returns a substring of string starting at position p, with length n. The string, position

and length must be enclosed in parentheses. String may be a constant or an expres-
sion, p and n may be numeric expressions or constants,

Example

1@ A$ = "ABCLEFG"

z6 B = MID$CAS: 5. 40

3@ PRINT "THE KEW STRING IS5 : ";EB#
48 END

READY
FRUN

THE NEW STRING 1S : CDEF

5.9 STRS (expression)

Converts a constant or numeric expression into a string of characters. The expression
or constant must be enclosed in parentheses.

Example

18 A = 24.56

28 B$ = STR$CH)

36 Bs = B$ + "R

49 PRINT “THE RESULT IS ™. Bf
o8 END

READY
>EUN

THE RESULT 15 34 36x

5.10 STRINGS (n, character or number)

Returns a string which composed of n number of the specified character.
Example

18 PRINT STRING$(1@, “*"»
28 END

RERDY
~RUN

Hexelokakkdkokok

Character may be a number from 0-255; in this case, it will be treated as an ASCII,
control or graphics code.

12 PRINT STRINGE (16, 33D
26 END

READY
“REUN

Tredrretnd

71

5.11 VAL (string)

Performs the inverse of the STR$ function; that is to return the numeric value of the
characters in a string argurnent.

Example

16 A$ = 56"

26 B = "23"

35 C = VAL GRS + " 4 BS)

4B PRINT "THE RESULTS ARE :"C; ", *; (+400
Se END

READY
SRIN
THE RESULTS ARE : 56, 23T , 1568 2%

BUILT-IN
ARITHMETIC FUNCTIONS

In this chapter, we will discuss the built-in functions available in the System 80. In most
cases, it is necessary to pass an argument (initial value) to the function, before a desired
value (result) would be returmed. The argument may be a constant, a numeric variable, or
an expression. The general format could be:

result = function (argument)

Example

18 A
26 B
28 E

Functions discussed in this chapter:

PR D0 Y OB W

1z

[
b

15.
16.

RND (XD
INT <CY /7 D
SUR (F * G - 4

4

RBS(XY
ATNCXD
CDBL (XD
CINTC(XD
COSC(Ky
CSNG(X)
EXPCKD
FIRCX)
INT (XD
LOGCKD
RANDOM
RNDC(XD
SGHCKY
SINCKD
SERCK)
TANCKD

73

74

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

ABS (X)

Returns the absolute value of the argument X.

ATN (X)

Returns the arctangent function (in radians) of the E.mcama. To get the arctangent
in degrees, multiply ATN (X) by 57.29578.

CDBL (X)

Returns a double-precision representation of the argument. The value returned
contains 17 digits, however, only the digits contained in the argument will be
significant.
CINT (X)

Returns the largest integer that is not greater than the argument. The argument must
be within the range of — 32768 to + 32768.
For example, CINT (2.6) returns 2; CINT (-2.6) returns -3.

COS (X)

Returns the cosine function of the argument (in radians). In order to obtain the
cosine of X when X is in degrees, use COS8 (X* .0174533)

CSNG (X)

Returns a single-precision representation of the argument. It returns a 6 significant
digit number with 4/5 rounding for a double precision argument.

EXF (X)

Returns the “natural exponential” of X, that is X .
‘This is the inverse of the LOG function.

FIX (X)

Returns a truncated representation of the argument with all digits on the right of the
decimal point being truncated or chopped off. For example, FIX (1.5) returns 1, FIX
(-1.5) returns -1.

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

INT (X)

Returns an integer representation of the argument, using the largest integer that is
not greater than the argument. The argument is not limited to the range -32768 to

+32768. For example , INT (3.5) returns 3, INT (-3.5) retumns -4.

LOG (X)
Returns the natural Iogarithm of the argument, that is _omn (X). To find the logarithmn
of a number of another base b, use the formula log, (X) = log, OC:omm (b).

RANDOM

This function causes the computer to generate a new set of random numbers every
tim¢ when the computer is turned on and runs a program which has RND functions.
No argument is needed in this function.

RND (X)

Returns a pseudo-random using the current pseudo-random number (generated
internally and has not access to the user).

RND (0) returns a single-precision value between 0 and 1,

RND (X) returns an integer between 1 and X inclusive.

However, X must be positive and less than 32768,

SGN (X)

The *sign™ function, that is to return -1 if X is negative, 0 is X is zero, and + 1 if X is
positive.

SIN (X)
Returns the sinc function of the argument (in radians).
To obtain the sine of X when X is in degrees use SIN (X* .0174533).

SQR (X)
Returns the square root of the argument.

TAN (X)
Returns the tangent function of the argument (in radians).
To obtain the tangent of X and X is in degree, use TAN (X* .0174533).

75

76

GRAPHICS FEATURES

There are only four graphics functions available in the System 80. However, they are
powerful enough to allow the user to create any graphic patterns on the display with or
without the help of our Extended BASIC language.

7.1

7.2

7.3

7.4

For the display map, please refer to appendix E.

SET (x,y)

This function turns on the graphics block on the display at the location specitied by
the coordinatss x and y. The display is divided up into a 128 (horizontal) by 48
(vertical) grid. The x — coordinates are ranged from 0 to 127, organized from left to
right. The v — coordinates are ranged from 0 to 47, organized from top to bottom.
Therefore, point (0, 0) is tocated at the extreme top left corer of the display;
whereas point (127, 47) is located at the extreme bottom right corner of the display.
The arguments x and y may be numeric constants, variables or expressions. Since the
SET (x, y) function uses only the integer portion of X and y,neither argument need

be an integer.

RESET (x, y)

This function turns off a graphics block on the display at the location specified by the
coordinates x and y. This function has the same limits and parameters as SET (x, y).
CLS

This function clears the entire display by tumning off all the graphics blocks. It also
moves the cursor to the upper left corner. This function allows the user to present an
outstanding display on the screen, without any symbol previously displayed.

POINT (x. y)

This function examines the specified graphics block to see whether it is ON or OFF
If the block is ON (has been SET), then POINT returns a hinary True (-1). If the
block is OFF, POINT returns a binary False (0).

Example
A =POINT (3, 40)

If point (3, 40) has bheen set, then A has the value of -1. Otherwise A has the value of
0.

CHAPTER 8

SPECIAL FEATURES

8.1

8.2

8.3

INP (port-number)

Input a 8-bit value from the specified port. The System 80 is capable of handling
256 ports, numbered from 0 to 255. Usually this function is used only when the
expansion box is installed.

Example

18 A = INFP (124)

This will input an 8-bit value from port 124 and assign it to variable A.

OUT port-number, value

Output an 8-bit value to the specified port, This statement requires two arguments:

port-number and the value. The System 80 is capable of handling 256 ports,
numbered from 0 to 255.

Example

3@ OUT 14, 248

QOutput the value 240 to port 14. Both arguments are limited to single byte values,
that is 0-255.

PEEK (address)

This function returns the 8-bit value stored at the specified decimal address in the
computer’s memory, and displays the value in decimal form. The value will be
between 0-255.

Example

28 B = PEEK (Z0@ea)

Returns the value stored at location 30000 and assign that value to the variable B.

77

78

34

8.5

POKE address value

This statement sends a 8-bit value to the specified (decimal) memory address

location. 1t requires two arguments: address and value. The value must be between
0-255.

Example
14 A = 25/
28 POKE 199d0, A : REM SEND YALUE OF A TO ARDRESS 19609,

8 B = PEEK (19@@3) : REM RETURNS wALUE AT AGDRESS 15060 TO B
48 PRINT “THE RESULT 15:":E
5@ END
FRERDY
SRUN
THE RESULT I%: 254
MEM

Returns the number of unused and unprotected bytes in memory.

Example
208 IF MEM < 150 THEN 7€O

When used as a command, it must be accompanied with the PRINT command. That is
PRINT MEM, to find out the amount of memory not being used to store program,
variables, strings, arrays, etc.

APPENDIX A

System 80 Reserved Words*

ABS
AND
ASC
ATN
CDBL
CHRS
CINT
CLEAR
CLOSE
CLS
CONT
COS
DATA
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFUSR
DEFSTR
DELETE
DIM
EDIT
ELSE
END
ERL
ERR
ERROR
EXP

FIX
FOR
FRE
GET

GOSUB
GOTO
IF
INKEY$
INP
INPUT
INSTR
INT
KILL
LEFTS$
LET
LSET
LEN
LINE
LIST
LOAD
MEM
MID$
NAME
NEW
NEXT
NOT
ON
OuT
PEEK
POINT
POKE
POS
PRINT
PUT

*None of these words can be used inside a variable name.

RANDOM
READ
REM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RND

SET

SGN

SIN

SQR
STEP
STOP
STRINGS
STRS
TAB
TAN
THEN
TROFT
TRON
USING
USR
VAL
VARPTR

79

APPENDIX B

ERROR CODES

CODE ABBREVIATION ERROR
1 NF NEXT without FOR
2 SN Svyntax error,,
3 RG Return without GOSUB
4 oD Out of data
5 FC Illegal function call
6 oy Overflow
7 OM Out of memory
8 UL Undefined line
9 BS Subscript out of range
10 DD Redimensioned array
11 /0 Division by zero
12 ID Illegal direct
13 ™™ Type mismatch
14 0s Out of string space
15 LS String too long
16 ST String formula too complex
17 CN Can’t continue
18 NR NO RESUME
19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand

22 FD Bad file data

Explanation of Error Messages

NF

SN

RG

oD

FC

ov
oM

UL
BS

DD

/0
ID

NEXT without FOR: NEXT is used without a matching FOR statement. This error
may also occur if NEXT variable statements are reversed in a nested loop.

Syntax Error: This is usually the result of incorrect punctuation, open parenthesis,
an illegal character or a mis-spelled command.

RETURN without QOmG_w“_ A RETURN statement was encountered before a
matching GOSUB was executed.

Out of Data. A READ or INPUT # statement was executed with insufficient data
available. DATA statement may have been left out or all data may have been read
from tape of DATA.

Illegal Function Call: An attempt was made to execute an operation using an illegal
parameter. Examples: square root of a negative argument, negative matrix dimension,
negative or zero LOG arguments, etc. Or USR call without first POKEing the entry
point,

Overflow: A value input or derived is too large or small for the computer to handle.
Out of Memory: All available memory has been used or reserved. This may occur with
very large matrix dimensions, nested branches such as GOTO, GOSUB, and FOR-
NEXT Loops.

Undefined Line: An attempt was made to refer ar branch to a non-existent line.

Subscript out of Range: An attempt was made to assign a matrix element with a sub-
script beyond the DIMensioned range.

Redimensioned Array: An attempt was made to DIMension a matrix which had
previously been dimensioned by DIM or by default statements, It is a good idea to
put all dimension statements at the beginning of a program.

Division by Zero: An attempt was made to use a value of zero in the denominator.

Illegal Direct: The use of INPUT as a direct command.

81

82

™

0s

LS

ST

CN

NR

RW

UE

MO

FD

Type Mismatch: An attempt was madc to assign a non-string variable to a string or
vice-versa.

out of String Space: The amount of string space allocated was excecded.

String Too Long: A string variable was assigned a string value which exceeded 255
characters in length.

String Formula Too Complex: A string operation was too complex to handle. Break
up the operation into shorter steps.

Can’t Continue: A CONT was issued at a point where no continuable program exists.
e.g. after program was ENDed or EDITed.

NO RESUME: End of program reached in error-trapping mode.

RESUME without ERROR: A RESUME was encountered before ON ERROR GOTO
was executed.

Unprintable Error: An attempt was made to generate an error using an ERROR
statement with an invalid code.

Missing Operand: An operation was attempted without providing one of the required
operands.

Bad File Date: Data input from an external source (i.e. tape} was not correct or was
in improper sequence, etc.

APPENDIX C

Control Codes:1-31

Code

10-13
14
15
16-22
23

24
25
26
27

28

29

30

31

Function

Backspaces and erases
current character

None
Carriage returns
Turns on cursor
Tums off cursor
None

Converts to 32 character
mode

Backspace - Cursor
Advance — Cursor
Downward { linefeed
Upward } linefeed

Home, return cursor to
display position (0,0)

Move cursor to beginning
of line

Erases to the end of the line

Clear to the end of the frame

83

B4

ASCII Character Codes 32-128

Code

32
33
34
35

Character

space
1

»”

WO 1O W — O

o YIA-

96-127
128

Character

| P MmN R E<SCHUROVOZECrR-" " T OTIONoUawE s

Lower case for
codes 64-95
Space

APPENDIX D

Program Limits and Memory Overhead
Ranges

Integers 32768 + 32767 inclusive
Single Precision —1.701411E + 38 to+ 1.701411E + 38 inclusive
Double Precision —1.701411834544556E + 38 to+ 1.701411834544556F + 38 inclusive

String Range: Up to 255 characters
Line Numbers Allowed: 0 to 65529 inclusive
Program Line Length: Up to 255 characters
Memory Overhead
Program lines require 5 bytes minimum, as follows:
Line Number — 2 bytes
Line Pointer — 2 bytes
Carriage Return — 1 byle

In addition, each reserved word, operator, variable name, special character and constant
character requires one byte.

Dynamic (RUN-time) Memory Allocation

Integer variables: 5 bytes each
{2 for value, 3 for variable name)

Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)

Double-precision variable:
(8 for value, 3 for variable name)

String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1 for each character)

Array variables: 12 bytes minimum
(3 for variable name, 2 for size, 1 for number of dimensions,
2 for each dimension, and 2,3.4, or 8 [depending on array type]
for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active {non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.

85

APPENDIX E VIDEO DISPLAY MAP

=e[O[1 [2T 3[4] 6 [7]&8] 00 121a[1a[5[16[17 a_a_mo 21]23]23[24]25]26]27]26]29] 37]3e]39 1 61]62]63
5 wob bt Ao st BBLlg il sl s skl ol lefallss 3 O
e]
K ‘ . i |63
2 2
3 Ll | 3
64l s . 4 127
5 5
¢) [
128] 1 1.] 7 |18
a . . . A]
9 . . ']
AﬂN (L u . o Mmm
t o " Ll
12 . . ! 12
256+ |. - , 11 118
4 14
15 * 15
320 , {383
17 i 17
18 18
384w . i ra | 447
20 0
121} n
448 (22 221511
23 g, 23
24 ‘ ’ 24
512 [z 1 235|575
Fid ' 28
27 ! 27
576 |20 | | : 2¢(639
2% 20
30 ! 0
6402 ’ N 115771 »|703
32 32
3 i 33
704 (34 : 34| 767
3% s
a6 i a8
768|37 “ | . I ‘ a|831
38 Ja
.mm 39
B32|s0 : +0|895
41 “

-Mm. : 42
896[s3 111 +3|959
T} a4
45 _ 45
960|s¢| | . 451023
o ! a7
LN i B B N oG BB B B B Be B DG BB AR B SEEk R B BB G L b e A B e e R e P e

86 ol1fz[3]a]s]|s]7]8]eofti]32]13]1aps[16[17]18]19[20}21]22]2 7|28 7138{39{20{4 14 2aalaaia s{a6]s 7jaslag]50l51]52]|53]54|55]56{5 mm_w. 61

Four more BASIC commands should be included in the E,m:.:o:o: set. They

are (1) INKEY$, (2) POS, (3) USR and (4) VARPTR. ADDENDBUM
(1) INKEY$ Example:
Returns a one-character string determined by an instantancous input from the i@ FEM + ENTER H PRSSWORD WITHOUT
keyboard. If no key is pressed during the execution of this statement, a null string 20 REM 4 DISFLAYING 1T ON THE SCREEN
is returned. ot Y
Characters typed to an INKEY$ are not automatically displayed on the screen. 43 PRINT " INPUT A PRSSHORD *
SE RE=INKEY$: IF A$="0" THEW && ELZE 38
& EF=INKEYS. IF B$="K" THEN v8 ELSE €@
T8 PREINT “WELECORE 'iY "
(2) POS (dummy argument) Example:
The computer returns a number from O to 63 indicating the current cursor 186 A=POSCE)
position on the display. Usually, O is used for the dummy argumnent.
(3) USR {argument) Example:
Calls a machine language subroutine and passes the argument to the subroutine. 16 INPUT I3 REM # [NPUT RRGUHENT +
Such a subroutine could be loaded from tape or created by POKEing Z80 machine 15 REM + FREFARE ENTRY RDLRESS +

code into the memory. Users who are not familiar with machine language programming
are not recommended to use this command.

The subroutine entry address should be POKEd into location 16526 — 16527.
The least significant byte should be in location 16526.

To pass the argument to the subroutine, the subroutine should immediately
execute a CALL OA7FH (call 2687 dec.). The argument will then be placed in
registers HL.

To return to your BASIC program without passing any value back, a RET
instruction should be executed.

To return a value, load the value into the HL register pair as a two-byte signed
integer and execute a JP OA9AH instruction. (OAYHA = 2714 Decimal)

USR routine reserves 8 stack levels for the users’ subroutine.

28
=E

FOKE 16520, @ FPOKE 16527124
R=USKEL LA EEM + RETURH ARGUMENT A +

The subroutine should place on top of the memory map. To protect that region
of memory, the user should input the highest memory locationavailable for his BASIC
program storage when the machine asks READY? at power up.

(4) VARPTR (variable name)
An address — value of the variable name will be returned.

If X is the rcturned address, the variables will be stored in the following
structures :-

() 2 — byte integer
K — LSB
K+ 1 —~ MSB

(i1) single precision variable
K — LSB
K + 1 — Next MSB
K+ 2 — MSB
K + 3 — Exponent value

(iii} double precision value
K — LSB
K + 1 — Next MSB
[]
[]
[]
K+ 6 — MSB
K + 7 — Exponent value

(iv) string variable
K — length of string
K + 1 — LSB of string starting address.
K + 2 — MSB of string starting address.

BASIC COMMAND INDEX

ACTIVE COMMANDS PROGRAMMING COMMANDS Page | EDITING COMMANDS
AUTO 13 CLEAR 45 LET 47 | NEWLINE — record ell changes
CLEAR 14 DATA 39 LPRINT 60 | SPACEBAR - move cursor one space to the right
CLOAD 15 DEFDBL 44 ON n GOSUB 52 | BACKSPACE — move cursor back to the left
CLOAD? 15 DEFINT 43 ON n GOTO 50 SHIFT-ESC — escape from Insert command
CONT 15 DEFSNG 44 ON ERROR GOTO 50 | H - hack and insert
CSAVE 16 DEFSTR 45 PRINT 28 | 1 — insert
DELETE 16 DIM 45 PRINT @ 30 | X — insert at end of line
EDIT 16 ERROR 55 PRINT TAB 31 | L — list line
LIST 17 END 47 PRINT USING 31 A .- cancel all editing changes
LLIST 19 FOR NEXT 52 PRINT# 41 | E — save all editing changes
NEW 17 GOSUB 50 READ 39 | Q — back to Active Command Jevel with no change
RUN 17 GOTO 49 RESTORE 40 | D —~ delete
SYSTEM 18 IF THEN ELSE 59 RETURN 50 | € — change
TROFF 18 INKEY$ % RESUME 57 | S — sgarch
TRON 18 INPUT 36 REM 58 | K — delete specified characters
INPUT# 47 STOP 48

STRING FUNCTIONS ARITHEMETIC FUNCTIONS | GRAPHIC FUNCTIONS mvmmg.ﬁ‘ _“,CZOH_@ZM

Pagc Pagc 73 Page 76 Page 77
ASC 68 ABS INT CLS INP
CHRS$ 69 ATN LOG POINT ouT
LEFT$ 69 CDBL RANDOM RESET PEEK
LEN 70 CINT RND SET POKE
MIDS 70 COS SGN POS*
RIGHTS 69 CSNG SIN MEM
STRS 71 EXP SQR USR*
STRINGS 71 FIX TAN VARPTR*
VAL 72

*explained in ADDENDUM

Dick Smith Electronics Pty Ltd.,
Cnr Lane Cove Rd & Waterloo
Road, North Ryde NSW 2113
Australia

COPYRIGHT (C) BY EACA ,1980,
ALL RIGHTS RESERVE! ™.

