TRS-80 SYSTEM 80 VIDEO GENIE PMC-80

Issue 22, September 1981

THE LETTER 1S J WHAT LETTER IS THIS?

il

WHAT LETTER IS THIS?
THE LETTER IS X i: _i"

-

TEACH YOURSELF SEMAPHORE

an invaluable aid to modern communicctions!

Also in this issue:

PROGRAMMING:

The Theory and Techniques of Sorting — Part 1
Better Basic Programming — Part 3

SOFTWARE:
Level 1 Roving Targets Solitaire
Three Billy Goast Gruff Movie

Basic Arrary Saver ESF Lower Case Driver
Sound Effects Revisited

MICRO-80

=7 P.0. BOX 213, GOODWOOD, S.A. 5034. AUSTRALIA. TELEPHONE (08) 211 7244. PRICE: AUS. $2.50, N.Z. $4.00, UK. £1.50

*kkxk ABOUT MICRO-80 ***x

EDITOR: IAN VAGG
SOFTWARE EDITOR: CHARLIE BARTLETT
HARDWARE EDITOR: EDWIN PAAY

U.K. CORRESPONDENT: TONY EDWARDS

MICRO-80 is an international magazine devoted entirely to the Tandy TRS-80 microcomputer and the
Dick Smith System 80/Video Genie. It is available at the following prices (all prices shown in
Aus.$ except for U.K. prices which are in pounds Sterling).

12 months subscription Aus. $24.00
NZ. $36.00 (Airmail)
Hong Kong $46.00 (Airmail)
U.K. £16.00
Single Copy Aus. $2.50
N.Z. $3.50 (Airmail)
Hong Kong $4.25 (Airmail)
U.K. £1.50
Months programs on cassette Aus. $3.50
N.Z. $4.00 (Airmail)
Hong Kong $4.50 (Airmail)
(at present available from Australia only) U.K. $4.75 (Airmail)
12 months subscription to magazine and cassette Aus. $60.00
N.Z. $78.00 (Airmail)

Hong Kong $88.00 (Airmail)
U.K. £41.00 (Airmail)

Special bulk purchase rates are also available to computer shops etc. Please use the form in this
issue to order your copy or subscription.

The purpose of MICRO-80 is to publish software and other information to help you get the most from
your TRS-80, System 80 or Video Genie and their peripherals. MICR0-80 is in no way connected with
either the Tandy or Dick Smith organisations.

** WE WILL PAY YOU TO PUBLISH YOUR PROGRAMS **

Most of the information we publish 1is provided by our readers, to whom we pay royalties. An
application form containing full details of how you can use your TRS-80 or System 80 to earn some
extra income is included in every issue.

*% CONTENT **

Each month we publish at least one applications program in Level I BASIC, one in Level II BASIC and
one in DISK BASIC (or disk compatible Level II). We also publish Utility programs in Level II
BASIC and Machine Language. At least every second issue has an article on hardware modifications
or a constructional article for a useful peripheral. In addition, we run articles on programming

techniques both in Assembly Language and BASIC and we print letters to the Editor and new product
reviews.

** COPYRIGHT **
A1l the material published in this magazine is under copyright. That means that you must not copy

it, except for your own use. This applies to photoccpying the magazine itself or making copies of
programs on tape or disk.

** LIABILITY **

The programs and other articles in MICRO-80 are published in good faith and we do our utmost to
ensure that they function as described. However, no 1liability can be accepted for the failure of
any program or other article to function satisfactorily or for any consequential damages arising
from their use for any purpose whatsoever.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 1

*kkkk CONTENTS *kkkk

EDITORIAL
BETTER BASIC PROGRAMMING - PART 5

THE THEORY AND TECHNIQUES OF SORTING - PART 1

SOFTWARE SECTION

BASIC ARRAY SAVER/LOADER
LOWER CASE DRIVER FOR THE ESF
SOUND EFFECTS REVISITED

MICRO-80 PRODUCTS

NEXT MONTHS ISSUE

CASSETTE/DISK EDITION INDEX

ORDER FORM

MICRO-80 i3 registered by Australia Post - Publication SQB 2207 Category B
AUSTRALIAN OFFICE AND EDITOR:
MICRO-80, P.0. BOX 213, GOODWOOD, SOUTH AUSTRALIA, 5034. TEL.(08) 211 7244

U.K. SUBSCRIPTION DEPT:

24 WOODHILL PARK, PEMBURY, TUNBRIDGE WELLS, KENT TN2 4NW.

Printed by:
Shovel & Bull Printers, 312A Unley Road, HYDE PARK, S.A. 5061
Published in Australia by MICRO-80, 433 Morphett Street, ADELAIDE.

‘ Sk % *FREE SOFTWARE OFFER* * K ,
EVERY NEW SUBSCRIBER TO MICRO-80 WILL RECEIVE A FREE CASSETTE ot
- CONTAINING THREE LEVEL | AND THREE LEVEL Il PROGRAMS PLUS COMPREHENSIVE
DOCUMENTATION ... THE RETAIL VALUE OF THE SOFTWARE WOULD EXCEED
THE COST OF THE SUBSCRIPTION'"

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 2

*kkkk EDITORIAL *kkkk

Stories coming out of the U.S.A. suggest that the Model I TRS-80 is far from dead there, despite
being withdrawn from the market on 31 December 1last because of excessive radio frequency inter-
ference. These machines are still manufactured and sold in Mexico and, reportedly, many thousands
are finding their way across the border into the U.S.. It is also reported that the second
hand value of a Model I exceeds it's new value and that anyone who advertises one is Tlikely
to besieged by hopeful buyers. In this environment, one would expect the PMC-80 (System 80/Video
Genie) to be faring particularly well. However, as a result of a court action taken several
months ago by Tandy, we understand that PMC-80's have been temporarily withdrawn from the U.S.
market.

In Europe and Australia this is not the case, of course, and this computer is proving to be
very popular. The Dick Smith organisation 1is taking advantage of the huge range of TRS-80 add
ons which is available. The colour upgrade kit which was mentioned by our U.K. correspondent
last month is rumoured to be under evaluation, brought back to this country by no lesser a person
that Dick Smith himself when he returned from a recent trip to the U.K.. As it stands, this
kit 1is thought to be rather too difficult to fit to have wide appeal and the U.S. ERAM high
resolution graphics module is also under consideration. Dick Smith Electronics already sells
the Percom Doubler and no doubt is assessing other peripherals and modifications.

For several months past, the glossy American computer mags have carried elaborate advertisements
for a program produced in the U.K., called "The Last One". It is proudly proclaimed to be the
last computer program you will need to buy since, with it you will be able to write virtually
any other program just by answering a few plain language questions (the suggested price of US$600
would certainly make it rather unlikely that you could afford to buy any more programs for a
while!). But, where was the program. No-one over here seemed to have seen it and foreign dealers
did not seem to have it. Was it all an expensive spoof? We can now say emphatically, no.
The program exists, at Tleast for some computers and 1is very, very good. We recently saw it
in action on a TRS-80 Model II. It was being used to develop an elaborate mail Tist program
and cut the programmer's time by at least 70%. The BASIC code it produced was good, tightly
packed, well commented and had excellent error handling routines built in. We understand that
a version for the TRS-80 Model III is 2 - 3 months away but that there are no plans to develop
a Model I version, which is a pity. You must have a disk system to use "The Last One". We
look forward to obtaining one ourselves for our Model III as soon as they are available and
will report more fully then.

One of the more embarrassing aspects of Micro-80 has been the way in which our publication dates
have fallen behind over the past twelve months or so. We reached the point where we were a
full three months behind. Reqular readers will have noticed we are catching up and we will
be producing a magazine every three weeks until we are once again on target, early in 1982.
At which point we will all be much happier. The accelerated rate of progress has caught one
or two of our authors a Tittle unawares. Such is the case with the current series of constructional
articles - Joysticks and Input/Output Ports for your '80. Part 3 of this series will appear
in the next issue but you will not have too long to wait. One of the other casualties has been
the Input/Output colomn which has been sparse of late. Many of our readers are receiving answers
by mail but, nevertheless this 1is an important aspect of our magazine. So, Input/Output will
once again become a significant and regular feature next issue and thereafter. You will have
noticed that the pages given over to '80 Users Groups and Reader Requests have not appeared
in the last two issues. This is because the vast majority of our readers have subscriptions
and it does seem a waste of valuable space to repeat the same (almost) information every month.
Therefore, both features will appear every second or third issue (turn and turnabout).

**% DISK VERSION OF MICRO-80 **

Starting with this issue, the programs which appear in Micro-80 each month will be available
on disk. OQur index on page 36 now carries the Filespec of each program. The disks are recorded
in 35 track single density format with their own operating system so will function in a single
drive system. The cost of a twelve month magazine subscription plus disk is A$120, i.e. you
will pay only $8 for a high quality disk complete with programs mailed to your address. Single
issue disks may be purchased for $10 each. If you already have a magazine or cassette subscription,
you may upgrade to a disk subscription by sending $8 (magazine subscribers) or $5 (cassette
subscribers) for each month of your subscription remaining. For example, if you have already
received five magazines from your twelve month subscription - send 7 x $8 = $56 to upgrade to
the disk subscription for the remaining seven months.

** QORCHESTRA 80 **

We have been so impressed by the quality of music generated by the software and hardware which
comprise the Orchestra 80 package that we have recorded a sample tune on the end of the cassette
this month so that cassette subscribers can hear for themselves. The music you will hear was
not produced by an electronic organ, it was produced by a TRS-80 Model I equipped with Orchestra
80. If you are not a cassette subscriber but would 1like to hear the music, send $2 for a cassette
of sample tunes created by Orchestra 80.

- 0000000000 -

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 3
%%k BETTER BASIC PROGRAMMING - PART 5 by Rod Stevenson **x
**% ASSEMBLY **

PRELIMINARIES.

Perhaps a better title would be Assembly-Basic, for this is what I do with my own assembly
routines - use them from a BASIC program. Of course, I do initially write and debug them in
assembly, using the Microsoft Editor Assembler Plus. When they are running to my satisfaction
I convert them to BASIC and POKE statements for loading from the "host" BASIC program. The
actual mechanics of this is that, having assembled into memory using the "IM" command of EDTASM+
which retains the source-code for debugging (yes, even Eddy's don't always run first time),
I return to BASIC and PEEK the locations where the program resides so I can write a DATA line
with these numbers for the BASIC which is added later, i.e. the PEEKed values are on the screen
while typing in the DATA line. Yes, I know Eddy has a routine to do this process automatically,
but I am not so sophisticated! (Eddy is Edwin Paay - one day we will prevail upon him to
publish this routine for us - Ed.)

While on the subject of lack of sophistication, I readily and openly admit that my own level
of assembly capability is an immeasurable leap below that of Eddy Paay. But I like to excuse
this as an advantage to you, our reader. Because Eddy fluently speaks Assembly, he has absolutely
no idea that anyone else in the world should have the slightest difficulty. But we do. In
fact, this article follows the format set by our elementary assembly group in the Adelaide Users'
Group. And perhaps here is the place to offer a suggestion to other groups - start your own
elementary sessions. There's no need to have a top-notch experienced Assemblerist to conduct
it: I run the Adelaide Group's! Indeed, we all learn from each other, and find considerable
enjoyment doing so. Actually the whole thing about Assembly is to think in the right way -
the actual detailed facts (instructions, etc.) will come easily then. The same applies to BASIC
and the whole area of computing. Should any other group be interested, I will be pleased to
provide further details - for extended ramblings, send a cassette and you'll be more likely
to get full details than if I have to write it all.

INTRODUCTION.

As foreshadowed in the earlier episodes, this is not intended to be a complete tutorial on Assembly.
I expect that, by now, you will have taken my advice and obtained Bill Barden's "TRS-80 Assembly
Language Programming". I also expect that you will have read it and, hopefully, have understood
at least some of it! If I am expecting too much already, I suggest you rush out to your local
Tandy store and get a copy. That which follows assumes that you are familiar with at least
the first three chapters.

The other book suggested is "Z80 Instruction Handbook" from Scelbi Publications. I use this
book all the time as a reference, both to find out if an appropriate instruction exists and
to get its exact syntax and full explanation for complete understanding of any side-effects.
If you can't get this, a (poorer) next choice would be "Zilog 780 Programming Reference Card".

"Z80 Instruction Handbook" is available from MICRO-80 - subject to supply.

ELEMENTARIES.

Although some knowledge of assembly language is assumed, I will set down briefly a few pertinent
points for you to further investigate and think on until you've really got a "feel" for the
concepts. With Assembly, as with all other computing subjects, it is definitely the way of
thinking that matters, not so much the facts! The facts you can easily get from a reference
book, but if you don't understand what the whole thing is about, you won't achieve much from
the reference book. So stick with it and a true understanding of Assembly will come. When
it does, you too will get great satisfaction from writing in Assembly.

Perhaps now is a good time to define the difference between Assembly and machine-code. When
people say they write in machine-code, they really mean Assembly, and indeed the two are used
interchangeably, although really they are not the same thing. Machine-code is the binary digits
the 780 understands; Assembly is the mnemonics and op-codes the ssembler accepts and then Assembles
into machine-code. For while 11001901 is the machine-code for the Assembly mnemonic RET, which
is easier to remember? Even if you realise that 11991991 is C9 in hexadecimal, it's still easier
to remember and write in Assembly using RET. Even if you don't use an Assembler, but look up
tables to convert your mnemonics to machine-code (hand-assemble), are you not still writing
in Assembly?

POKE and PEEK are the Basic language commands for accessing memory directly. POKE simply loads
a value into memory, PEEK gets it out of memory. So to think there is something complicated
or that POKE and PEEK belong to some separate language, you can see is totally erroneous.

If you have followed my advice and read Barden's book, you will have come upon the seemingly
difficult subject of flags. Of course, they are not difficult at all in reality, and are essential
to Assembly programming. So, if you didn't follow them in all their magnificence, try again!
They are so important though, that I will present here yet another way of explaining them -
my own!

Just as BASIC has a facility for comparison (IFA=B THEN...), so Assembly has flags to allow
you to write code dependant on the result of arithmetic operations. By the way, initially you'll
get into less trouble if you use the A register for all arithmetic operations. The flags which

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 4

you must know and understand are the zero and carry flags. There are others, but you'll get
by (at least initially) with just these two, which are in reality four, since either the zero
flag is set or not, and either the carry flag is set or not. In reality, what you say is "if
the zero flag is set then...". The zero flag will be set if the result of the arithmetic operation
you just performed on the accumulator was zero; it will be reset if the result of the operation
you Jjust performed on the accumulator was not zero, i.e. Z or NZ. Similarly, with the carry
flag - C or NC. Although there is a slight complication here as the carry flag also acts as
a borrow flag for subtraction operations on the accumulator.

The reason why Carry and Zero flags are the ones to use initially is that they are the only
ones to use with relative jumps - viz. JRNC,LABEL. It is advisable to use relative jumps wherever
possible to maintain relocatability of your program.

THE ASSEMBLER.

The Assembler I use 1is the Microsoft Editor Assembler Plus (available from MICRO-80 PRODUCTS).
It has various useful additions to the Tandy version, but it also has a monitor (ZBUG)and areally
terrific manual included with it. And you really do need a manual - Tandy's version doesn't
have one which tells you how to work the Assembler, it only has pages and pages of 780 op-codes,
the explanation of which is almost impossible to understand. 1 firmly believe this is why so
many are deterred from Assembly language programming.

SYSTEM 80s.

I have found that some System 80s (two to date) have a problem recording the assembled object
code on tape and loading it back as a SYSTEM program. I don't know why, and can't advise you
what to do. Ask Dick!

00100 ;SAMFLE SIMFLE ASSEMELY FROGRAM WRITTEN
00110 :BY ROD STEVENSON TO WHITE-OUT SCREEN.
00120 ;
00170 ;CAN EE CALLED FROM BASIC BY USR(O).

00140 ;WILL RETURN TO CALLING FROGRAM AFTER RUNNING.

e

00150 3
7FO0 00160 ORG 32512
7F00 2100EC 00170 INIT LD HL ; ZCOO0H 1 SCREEN START ADDRESS
7F0O3 OE1O 00180 LD C,146 :VERTICAL LINES
7F0OS 04640 00190 VRTLF LD R, 44 tHORIZONTAL SFACES
7F07 Z46EBF 00200 HRZLF LD (HL) 191 :GRAFHICS BLOCEK
7FO9 23 00210 INC HL :NEXT SCREEN SFACE
7FOA 10FR 00220 DJINZ HRZLF 164 SFACES ACROSS
7FOC oD 00230 DEC c :NEXT LINE
7FOD 20F& 00240 JR NZ.VRTLF 1146 LINES
7FOF C9 00250 RET :BACK TO BASIC
7F00 00260 END INIT

00000 TOTAL ERRORS

This program is not intended as a masterpiece. In fact, Eddy Paay, in his series on machine
language, had a much more efficient and neater one using the LDIR instruction. The reason I
wrote this one in this way, is that I imagine readers of this article are just into Assembly
from BASIC, and this particular method is very similar to the approach which would be used in
BASIC.

The whole reason for doing this in Assembly is speed; remember, the two major and common reasons
for Assembly are speed and changes to the operating system which must be done from Assembly.
The latter is the subject of the next example. Incidentally, PRINTSTRING$ will perform the
same almost as quickly from BASIC.

Now to an explanation:

Line 169 1is an Assembler pseudo-op that tells the assembler where to put the code. See the
Editor Assembler Plus manual for details.

Line 179 is the actual start of the program, and I always give the first line a label -
you'll see why later. This line loads the first screen address into HL.

Line 189 1loads C as a counter for the 16 lines on the screen.

Line 199 also has a label and loads B as a counter for the 64 spaces across the screen.
Notice you can use decimal and hex notations quite happily together and the Assembler
looks after all!

Line 209 with a label loads 191 (the value of the solid graphics block) into the memory location
(which happens to be the screen)pointed at by HL .

Line 219 gets HL to point to the next screen position.

Line 220 is the only non-BASIC type instruction. It decrements B and if B does not become
zero will send the program back to the address specified - in this case, a label,
so that loop HRZLP (for horizontal loop - remember my urging to use meaningful names)
will continue for 64 spaces, then B will become zero and the program will fall through
to line 23d.

Line 23 decrements C to point at the next line down the screen.

Line 240 will test if C has become zero (by the zero flag), and if not, will send the program
to the address specified - in this case, the label VRTLP (for vertical loop) until
16 lines have been done, when the program will fall through to line 250.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 5

Line 250 simply returns the program to BASIC (or whatever program called this routine).
If you want to run this on its own, just give this line a label (such as LOOP),
then change RET to JR, and in the next column put LOOP. Then it will run and stay
there until you press RESET! In the op-code this is 18,FE or 24,254 decimal in
BASIC.

Line 26¢0 1is another Assembler pseudo-op (if you don't put it in you'll get an error) which
tells the Assembler you have finished. The 1label INIT (see why I put one in the
first line when it wasn't used in the program) is to make the Assembler record on
tape the entry point (in this case, the start) of the program, so when you type
/ (slash) after loading the system tape you don't have to put an address.

So, I hope it's all clear so far. (No, not a pun). Can you see the BASIC two, nested for-next
loops? 209 to 220 is inside 199 to 249.

Now, onto the real subject of this article - using it in BASIC.

10 *BASIC PROGRAM BY ROD STEVENSON TO USE WHITE-OUT PROGRAM WRITTEN IN ASSEMBLY.

20 TM=PEEK (16561) +PEEK (16562) X25 *GET TOP OF MEMORY

Z0 AD=TM-20 *TOP MEM, MINUS SIZE PROGRAM, MINUS 2

40 POKE16561,AD-INT(AD/256) X256: POKE16562, INT (AD/256) : CLEARSO “PROTECT NEW
MEMORY SIZE

S0 AD=PEEK (16561) +PEEK (16562) ¥256+2 *NEW MEMORY SIZE

60 EA=AD *SAVE ADDRESS IN CASE CHANGED BY NEXT LINE

70 IFAD>Z2767THENAD=AD-65536 *SYNTAX REQUIRED IF >16K OF MEMORY

80 FORI=ADTOAD+15:READD:POKEI,D:NEXT °POKE M/L INTO MEMORY

90 POKE16526,EA-INT (EA/256) ¥256: POKE16527, INT (EA/256) ?POKE M/L ADDRESS INTO

USR (0)

100 DATAZZ,0,60,14,16,6,64,54,191,35,16,251,13,32,246,201 7 M/L PROGRAM

110 X=USR(0) “CALL M/L PROGRAM

120 IFINKEY$=""GOTO120 *AFTER M/L WAIT FOR KEY-PRESS

130 CLS

140 IFINKEY$=""GOTO140 *AFTER CLS WAIT FOR KEY-PRESS

150 GOTO110

Alright, so this looks complicated! It's not! The only "frill" is that I 've let the computer
determine how much memory it's got and protect enough for this program. After that, I simply
POKE it 1in and access it. The reason for doing so is that your masterpiece is not dependant
on the operator remembering to protect memory at the right place.

There are other ways of storing and accessing machine-code routines, but they'll have to wait
until next time. "

So, now an analysis:

Line 20 finds out what the top of memory is currently set to. Note, TM as a meaningful
variable name. 0f course, this top of memory will vary, not only with the amount
of memory, but with whatever memory is protected for other programs in answer to
the Memory Size? question.

Line 39 allows room for the program plus extra. When you specify a memory size it actually
protects more than specified, because the top of memory is actually the highest
memory Jlocation BASIC can use; but when using this method of protecting memory,
you'll get exactly what you ask for.

Line 40 sets the new memory size. A full explanation of the 2 byte memory addressing used
by the 780 will be offered next instalment, but briefly: the memory address must
be held in 2 bytes (it's too big to fit into one), and so is divided into most and
least significant parts, the former being 256 times bigger than the Tlatter. So
the whole address divided by 256 is the larger number, the remainder is the smaller.
Having set the new memory size (protection), it is necessary to CLEAR a number of
bytes to reset pointers. And more on pointers next time. Yes, it is the same CLEAR
as in clearing string space, and the same CLEAR which zeroes all variables.

Line 590 is necessary because the CLEAR in Tline 49 destroyed the variable which held the
memory protected for our program. So we have to find it again by the same process
as used in line 20.

Lines 60 and 70 take care of the syntax required for more than 16K of memory, so don't worry
too much about these two lines here.

Line 80 reads the machine-code in DATA statement line 109 and POKEs it into memory where
it has been protected already. A trap for young players here is to put too big
a loop in the for-next counter. Realise that the very first location will have
a value POKEd into it! After all, #-15 is actually 16 places!

Line 99 tells USR(®) in line 119 where to find the routine.

Line 119 calls the program by jumping to the address given it by 1line 90. So there can be
more than one machine language program in memory at once and whatever address is
given in 16526-7 will determine which one will be jumped to by USR(D).

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 6

Line 120 is where the program will return after executing the machine-code. It will loop
here till a key is pressed when it will clear the screen in line 13@, wait for another
key press in line 148, then call the routine again by jumping to line 110.

Obviously this program on its own is not very exciting; it's meant only to illustrate various
points - one being the simplicity of writing Assembly and using it from BASIC!

Incidentally, those who wonder what's happened to the stack (more on this next time for those
who haven't wondered) when I reset Memory Size? The BASIC interpreter handles a line at a time;
so as long as the new memory protection is set in a stand-alone line, all is well.

00100 3

00110 ;ROUTINE WRITTEN BY ROD STEVENSON TO PROVIDE

00120 ;LINE INPUT FOR LEVEL 2.

00130 ;

00140 ;TO BE CALLED FROM BASIC WITH THE ADDRESS OF THE INPUT
00150 ;STRING WHICH HAS BEEN ALLOCATED PASSED AS THE

00160 3 ARGUMENT IN USR(0Q).

00170 ;LENGTH OF THE INPUT WILL BE RETURNED IN X OF X=USR(0).

00180 3
7FRC 00190 ORG F2700
7FRC D9 ° 00200 INIT EXX : EXCHANGE REGISTERS
7FBD CD7FO0A 00210 CALL OA7FH :GET ADR FROM USR(0)
7FCO OEOO Q0220 LD C.0 : ZERO C FOR COUNTER
7FC2 CD47900 00230 GETCHR CALL 0049H :GET CHAR FROM KEYRD
7FCS FEOD 00240 CF 13 :CHECK IF ENTER
7FC7 280D 00250 JR Z,RETN :IF ENTER RETURN TO BASIC ROUTINE
7FC? CD3ZZ00 Q0260 cALL QO0Z3H :PRINT CHAR ON SCREEN
7FCC 77 00270 LD (HL) ,A ::PUT INTO $TRING MEMORY
7FCD oC 00280 INC C :ADD TO COUNTER
7FCE 79 00290 LD A C : CHECK. NO. INPUTS
7FCF FECS8 00300 CcP 200 sONLY 200 ALLOWED
7FD1 3F003X 00310 IR NC,RETN :IF >200 RETN TO BASIC
7FD3 23 00320 INC HL : INCREMENT $TRING LOCATION
7FD4 18EC 00ZZ0 JR GETCHR :GET ANOTHER CHAR
7FD&6 79 00Z40 RETN LD A,C :RTN TO BASIC ROUTINE:COUNT TO A
7FD7 D9 QO350 EXX :GET BACK REGISTERS
7FD8 2600 00360 LD H, 0 :ZERO H
7FDA 6F 003X70 LD L.A :COUNTER TO H
7FDR C3E2A0A 00380 JP OAAH :PUT COUNTER INTO X OF USR(O) &
:RETURN TO BASIC PROGRAM
7FRC 00390 END INIT

00000 TOTAL ERRORS

This is a source-code for the line-input program provided in the input checking episode. Again,
only as an example, this one is in Assembly because it can't be done in BASIC - although something
like it (but not as good!) can bebuilt up by adding together INKEY$. The routine is not written
in a BASIC-style, so here's your chance to break the BASIC-thinking habit!

By now, you will have become familiar with my way of writing and thinking (horrors!), so I
wont' analyse every line. The comments should tell enough, so just a few specific points:

Line 209 exchanges registers in case this routine is called from the middle of a BASIC line,
in which case certain registers will be holding information required by the interpreter
for the remainder of that 1line. They are changed back again by 1line 358, after
a bit of manipulation in line 349 to save the counter value in C. The counter in
C is, in this case, counting upwards as each character is input - in the previous
screen writing program the counters were counting downwards. We'll leave our readers
to ponder the significance of this difference and the ramifications thereof, and
decide which is better - it could well be either way in either program.

Lines 239 and 260 are ROM routines found in Eddy Paay's "ROM Reference Manual" (from MICRO-
80 PRODUCTS), and frankly, without it I couldn't have written this program!

Lines 219 and 389 are ROM calls associated with the USR(@) which are documented (almost well
enough) in the Level II manual.

10 "BASIC ROUTINE WRITTEN RY ROD STEVENSON TO USE "LINE-INPUT" FROGRAM WRITTEN
IN ASSEMBLY

20 *ROUTINE TO ACCEFPT ANY INPUT (MAXIMUM 200 CHARACTERS) UNTIL TERMINATED RY
ENTER

S0

40 POKE 16561, 186 : POKE 16562, 127 FROTECT MEMORY

50 CLEAR 500 RESET FOINTERS & ALLOW ENOUGH $TRING SFACE

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 7

60 CLS
70 FOR I=3Z2700 TO Z273Z
80 READ ML

90 POKE I, ML °PUT M/L INTO MEMORY

100 NEXT

110 DATA 217, 205, 127, 10, 14, 0, 205, 73, O, 254, 13, 40, 13, 205, S1, O, 119,
2. 121, 254, 200, 48, %, 35, 24, 236, 121, 217, 38, 0, 111, 195, 154,

10

120 POKE 16526, 188 : POKE16S527, 127 °PUT M/L ADDRESS INTO USR(0)

170 IN$=STRING$ (200, 65) *CREATE $TRING TO HOLD INPUT

140 AD=VARPTR (IN%$) "GET ADDRESS OF $TRING ADDRESS

150 AD=PEEK (AD+1) +PEEK (AD+2) X25 *CONVERT $TRING ADDRESS TO A DECIMAL NUMBER

160 PRINT"INPUT UP TO 200 CHARACTERS?"
170 X=USR (AD) *PASS ADDRESS OF $TRING TO M/L ROUTINE

180 PRINT

120 PRINT"THE INPUT WAS: "

200 PRINT LEFT$ (IN%, X} PRINT ONLY NUMBER OF CHARACTERS INFUT
210 PRINT

220 60TO0 120

And this is the BASIC program to use the machine-language routine. Again, not a great deal
of analysis required, I hope. In this case, memory is protected from BASIC, but 16K is assumed,
i.e. top of memory is not looked for as in the last BASIC program to white out the screen.
To change the location of this routine, it's simply a matter of changing the loop numbers iin
line 7@, and the address given to USR(#) in line 120, and protecting memory in line 49 or manually,
by answering Memory Size? Actually, this BASIC program is only the same one I presented two
episodes ago in the input-checking routine. The "bones" of that program which were in lines
1 and 32760 have been UNPACKed with PACKER for easier reading and understanding (I hope).

CONCLUSION.

Almost the end of this article. 1 apologise for getting carried away in my enthusiasm for Assembly.
As always, feedback from you, our readers is welcome. We are nearing the end of the scheduled
series and if it is to continue past the scheduled subjects, we need to know what is required.
Please feel free to make comments and requests for further information.

Next month we will cover the following topics: Explanation of the stack, ways of storing machine-
code, handling and disabling break-key (promised in first episode and not forgotten), calls
other than USR(@), pointers, fixed RAM, VARPTR, monitors and utilities, two byte addressing
conventions and decoding. Sound routines and explanation will be the subject of another, simple,
episode.

- 0000000000 -

%%% THE THEORY AND TECHNIQUES OF SORTING - Part 1 by B. Simson ***

This is the first article of a series discussing the techniques of and the theory behind sorting
routines. This first article will be oriented towards the beginner. I will assume that you do not
know anything about sorting at all, and your level of knowledge of BASIC is fairly elementary.

Let's say that you were given the task of sorting some numbers, starting with one number, say 35.
It's easy. The answer is: 35. No sorting needed at all! Let's assume that you now had to
write a program on your computer to sort 2 numbers. First, you should give some thought as
to how you will store them in a computer. The first way that comes to mind is by using some
variables, say A and B. So, one way to go about it is this:

10 INFUT A,E
20 IF A<B THEN FRINT A,EB ELSE FRINT K,A

Fine! Works well, is short and easy. But now, let's consider the problem of sorting 3 numbers.
10 INFUT A,E,C
20 IF A<=R THEN 80
0 REM A IS » B HERE, SO NOW WE HAVE TO DETERMINE
40 REM WHERE C GOES.
50 IF C«<=k FRINT C,E,A : END
60 IF C<=A FRINT EB,C,A : END

70 FRINT E,A,C : END

7S

80 REM A IS < OR = B, S0 WHERE DOES C GO?
90 IF C<=A FRINT C,A,E : END

100 IF C+<=E FRINT A,C,E : END

110 FRINT A,E,C : END

120 REM FHEW !'!

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 8

Another way to do this is to consider each permutation of the result individually. With 3 numbers,
we have 6 permutations, that is...

A,B,C
A,C,B
B,A,C
B,C,A
C.,A,B
C.B,A
So we could write something like this:
10 IF A<=E AND EBE<=C FRINT A,E,C : END
20 IF A<=C AND C#=E FRINT A,C,E : END

H H

60 IF C<=BR AND E<=A FRINT C,E.A : END

However, it should quickly become apparent that such a method is undesirable for larger list
sizes. For example, a list of just 6 numbers has 720 permutations, and a list of just 10 numbers
has 3,628,000 permutations! The above method would result in some very large programs for
relatively small list sizes.

What we need is a method of problem solution using a predefined sequence of steps applicable
to a general list size, that is an algorithm.

Some other definitions are in order:

Sorting: The operation of arranging items into some sequential order according to some ordering

criterion, e.g. the ordering criterion for the alphabet has been established to be
A before B, B before C, etc.

Pass: A term used to describe a part of the operation of a sort. It is the operation whereby
all items in a given list are examined individually in an orderly fashion.

One fairly elementary algorithm for sorting an unknown list size is called the "bubble" or "ripple"
sort. We will now examine this algorithm in detail, using as our example to work from, a list
size of 6 numbers (or items). Let's say our list is comprised of the following items:

8 4 3 9 6 5

We will need a structure for storing the data. This requires a structure of homogeneous data
elements (i.e. of the same type) that facilitates easy access. Such a structure is available
in BASIC, called an array.

So, let's store the first item in the first "cell", the second in the second "cell", etc. We

shall call the whole array or family of items ...A, so that the first item (the number 8) is
referenced by A(1), the second item by A(2), etc.

Now, looking at the 1list of numbers above, there are 5 adjacent pairs of items (assuming the
list is not circular), that is... 8 & 4, 4 & 3, etc. This algorithm will examine each adjacent
pair and swap them if necessary, i.e. if left item is greater in value than the right item.
This is what is known as sorting by transposition.

So the sequence of steps will be:

1. Compare 1st pair, then 2nd pair, 3rd pair, 4th pair and finally 5th pair, i.e. examine
A(1) and A(2) (values 8 & 4), then A(2) and A(3) (values 4 & 3), etc. If the result
of any of the comparisons 1is that the left right, then the items in the pair shall
be swapped. This whole step is one "pass". The Tlast pair shall be called the "pair

limit".

2. Now compare 1st pair, 2nd, 3rd and 4th, i.e. only the first 4 pairs are examined. The
pair limit has been decremented by 1. Items shall also be swapped as in step 1.

3. Now compare only the first 3 pairs.

4. Now compare only the first 2 pairs.

5. Lastly, compare just the first pair.

The above steps involved 5 passes, with the pair limit being reduced by 1 for each pass. The
reason why the last pair does not need examination in step 2 is because the item having the
largest value (9) will drop to cell 6 after the first pass, so only the first 4 pairs need be
examined after that, and so on.

Let's trace the workings of this algorithm on the data for the first pass. The flowchart showing
the steps involved in the bubble sort algorithm should help you to follow the logic of the first
pass.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 9

BUBBLE SORT ALGORITHM

MAKE A
PASS

START

SET J
T0 1

éﬂ____,

NO_NEED o Less | COMPARE ITEM
T0 THAN LIST SIZE AT J TO THE
SORT NEXT ITEM
MAKE A
PASS
SHAP
l ITEMS
DECREMENT
PAIR LIMIT
R,
PAIR
LIMIT] INCREMENT
? J
EJEMS COMPARED SWAP? LIST AFTER COMPARING
1st pair: 8, 4 4, 8 4 8 3 9 6 5
2nd pair: 8, 3 3, 8 4 3 8 9 6 5
3rd pair: 8, 9 NO 4 3 8 9 6 5
4th pair: 9, 6 6, 9 4 3 8 6 9 5
5th pair: 9, 5 5,9 4 3 8 6 5 9

If the 1list was arranged vertically, you can see that each successive pass causes the smaller
valued items to 'bubble' up to the top, and the larger ones to sink to the bottom.

Now, let's write a basic program to do this. First, let's assign some variable names:

List size (6 in this case)

Name of array holding all items in list

Index into array A. (method that items are accessed).
emp = Temporary variable needed to swap a pair of values.

P
nwonon

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 10

100 FOR PAIRLIMIT=(N-1) TO 1 STEF -1

120 FOR J=1 TO PAIRLIMIT

140 IF AGI) * A(J+1) THEN
TEMP=A(J) :A(J)=A(J+1) : A(J+1)=TEMPF

160 NEXT J .

180 NEXT PAIRLIMIT

Line 199 causes the pairlimit to range from 5 down to 1, as required above.
Line 120 enables the first 5 (pairlimit) pairs to be accessed, using J.
Line 140 compares an adjacent pair.

If out of sequence, then the items in the pair are swapped, using Temp to achieve this.

The outer FOR/NEXT loop is one pass. For each pass, you can see that the pairlimit is reduced
by 1, so that the inner FOR/NEXT loop examines one less pair each time.

There are many refinements that could be made to this algorithm. One of them is to use a flag
to indicate that the data is sorted, so that any further passes are superfluous. If, for instance,
after performing a pass, we have not swapped any items, this indicates that all the items are
in the desired sequence. We do this by setting a flag when a swap is made, and testing if the
flag is set after a pass is complete.

Also, we should test to see if the list size is not less than 2. If so, no pairs can be compared,
and therefore no sorting is required.

Let's add these to our program:
20 IF N<2 THEN PRINT "NO SORT REGUIRED":GOTO 200
100 FOR PAIRLIMIT=(N--1) TO 1 STEFP -1

110 FLAG=0O

120 FOR J=1 TO PAIRLIMIT

140 IF A(J) *» A(J+1) THEN
TEMFP=A(J):A(J)=A(J+1):A(J+1)=TEMF:
FLAG=1

160 NEXT J

170 IF FLAG=0 THEN PAIRLIMIT=1

180 NEXT PAIRLIMIT
200 RETURN
Line 110 resets the flag ready for the next pass.
Line 140 sets the flag if a swap is made.
Line 179 tests whether a swap was made. If not, then the sort is complete, so we make an orderly
exit from the routine by forcing an end to the outer loop.
Line 209 simply makes this a subroutine so that we can call it later using GOSUB.

Now, let's put this routine into practice. First, we will generate some random data to be sorted,
then print them out for you to see before sorting. Then the sort routine will be called, after
which the sorted data will be printed.

10 CLS: INPUT "NUMBER OF ITEMS TO SORT":;N
20 IF N < 1 THEN 10

25 RANDOM: DIM A(N)

Z0 FOR I=1TON

9 A(I)=RND(100) : REM FILL WITH A NUMEBER 1-100
40 NEXT I

45 REM FRINT DATA BEFORE SORT

50 FOR I=1TON

52 PRINT A(I);

54 NEXT I: PRINT

56 REM NOW SORT THE ITEMS IN THE LIST
58 GOSUER 0

60 REM NOW PRINT THE SORTED LIST

62 PRINT "LIST AFTER SORT:"

64 FOR I=1TON

b6 PRINT A(I);

68 NEXT I

ENTER the entire program, including the sort subroutine, and run it.

Try working through a list size of 2 in your mind, to see how that compares with the logic of
the program at the start of this article. Neat, isn't it?

Next month, we will be 1looking at algorithms that involve sorting by exchange and sorting by
insertion, and at a technique that can be used to speed up the old bubble sort algorithm.

- 0000000000 -

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 11

*xkkk SOFTWARE SECTION ki

%%* ROVING TARGETS LI/4K by Br. P. Van Eeken **

This program is designed to teach children equivalence in fractions by rewarding correct answers
with the opportunity to play the game Roving Targets.

Up to 24 blocks are drawn on the screen, some shaded in, some not. The student must answer
the fractions that are not shaded in and then convert this fraction to an equivalent fraction.
Having obtained the correct answer, the student may then fire at the Roving Targets which are
two of the boxes that move randomly around the screen. At the same time, the computer fires
at the student's "man". The objective is to score more hits on the targets than are scored
on the student's man.

Line 509 Chooses a number from 3 to 24, i.e. the fraction for use. (B) This line also finds
the highest equivalent fraction or factor of this number (besides the number itself).
(c)

Line 519 A random factor, that changes C, (if rnd(2)=1) from the highest factor of B to
a lower factor, producing a lower equivalent fraction. The actual change occurs
in lines 512, 513.

For example: If B=18 line 5@@ will choose the value of C as being 9. (Being the highest factor
or equivalent fraction for B, besides B itself).

If line 519 decides to choose a lower factor then lines 512 and 513 will determine
that number... 3 in this case.

Hence the original number B(18) will be equated with C(3) and the fraction equated
by the computer with eighteenths will be sixths; as B/c equals 6.

Line 526 makes J equal to B/C; i.e. 6
and N determines the number of sixths that are to be shaded in. I equals J*N and
is the maximum number of eighteenths that are not to be shaded in.

Lines 529 to 540 then draw the number of fraction units B, in lots of the equivalent fraction
C (sixths) and shades in the number of eighteenths B-I.

1 C.:P.A.B96;:6.499

2 D.W,HALVES, THIRDS, QUARTERS, FIFTHS,SIXTHS, SEVENTHS

3 D.EIGHTHS,NINTHS, TENTHS, ELEVENTHS, TWELFTHS, THIRTEENTHS
4 D.FOURTEENTHS, FIFTEENTHS,SIXTEENTHS, SEVENTEENTHS, EIGHTEENTHS
S D.NINETEENTHS, TWENTIETHS, TWENTY FIRSTS, TWENTY SECONDTHS
&6 D.TWENTY THIRDS, TWENTY FOURTHS

7 C.:V=0:U=0:0=0:T=10:REST. :F. X=1T.24:REA. A$:N. X

8 P.A.24;"< ROVING TARGETS >

9 D.®,UP,ENTER, DOWN, 1,LEFT,~,RIGHT

10 F.X=1T.4:REA.A%$,B$:P."PRESS ";A+;" TO SHOOT ";B$:N.X
11 W=1:A(W)=S50:A(2)=18:60S5.970:P.

12 P."THIS IS YOUR MAN...":G0S.970:A(2)=24:60S.930:P.

13 P."THIS IS MY MAN.....":G0S.930

14 P.:P."PLEASE GIVE ME A NUMBER BETWEEN 1 AND 999

1S I."THE SMALLER THE NUMBER THE HARDER THE GAME";:S

16 IF(S<1)+(5>999)6.8

30 C.:W=1:60S.980

31 AMWI=R. (121) : AW+4)=A (W) : A(W+1)=R. (36) +3: A(W+4) =A (W+1)
32 IF(AMW <A+ +7) X (AW) >A(W+2)-7)6. 31

33 IFW=360S.970:F.Y=1T.S:N.Y:G.44

34 G0S.930

35 F.X=A2)-1T.AR)+1: IF(X=A(4)) X (A(1)<A(3))IR. (2,0):6.45
36 IF(X=A(4))x(A(1) >A(3I))R. (0,0):6.45

37 N.X

40 IF(A(I) A1) X(A(4) >A(2))R. (6,0)

41 IF(A(3)<A(1))Xx(A(4)<A(2))R. (4,0)

2 6.45

44 ON(P. (2,0))6G.50,45

43 IFP. (0,0)=060S. 200

446 IFP. (6,0)=0G0S. 300

47 IFP. (4,0)=0G0S. 400

48 IFP. (2,0)=060S.100

50 W=W+2: IFW>4W=1

60 G0S.950: IFW=360S. 980

70 G.31

ISSUE 22 (SEPTEMBER 1981) MICRO-80

PO RO O DN

P I I I I I
gooooOoOOoNOOO0

Q
o)

nen &
0

¢
o
ot

S10
S12
S13
520
521
s2
S30
S35
sS40
s45
S50
S60
S61
565
570
575
590
595
600
601
602
603
604
605
=8
607
608
509
610
620
621
624
630
798
799
800
801
802
805
806
807
808
810
811
815
816
817
818
819
820
821
930
940
941
950
260
970
975
980
995

Y=A(W+1) +1

F.X=A(W)+7T.127: IFP. (X,Y) G.800

S. (X,Y):R. (X,Y):N.X:G.810

F.X=A(W) —1T.38.-1: IFP. (X, A (W+1)+1)G. 800

S. (X, A(W+1)+1) zR. (X, A(W+1)+1) z N. X

G.810

Y=A (W) +3

F.X=A(W+1)+3T.41: IFP. (Y, X) G.B0OO

S. (Y, X):R. (Y, X):N.X:G.810

Y=A (W) +3

F.X=A(W+1)-1T.18.-1: IFP. (Y, X)G.B0OO

S. (Y, X):R. (Y,X):N.X:G.810

F.Q=1T.3 .
A=0:B=R. (22) +2:F.P=R-1T.2S.-1: IFR/P=1. (R/P)C=P:G.510
N.P:G.S00

IF(C<13)+(C>1) XR. (2)=16.520
F.P=C—-1T.2S.-1: IFC/P=1. (C/P)C=P: IfC>1G.520

N.P: IF(C<2)+(C>12)G.500

D=—8:E=0:A=R. (C—1)+1:F. I=CT.1S.-1: IFC/A=. (C/A)G. 526
N.I:G.S20

J=R/P:N=R. (J) : I=JXN: A=OMF.P=1T.RS.C:F.0=1T.C: W=1: IFP>IW=3

D=D+8: A(W)=D: A(W+1)=E: IFW=1G0S. 2Z30: A=A+: (6. 540
G0S.270

N.O:E=E+4:D=-8:N.P

E=E+1: IFE?3Z<>I. (E/3)5G.545

E=E/Zx64

P.A.E; "HOW MANY PARTS (OR ROXES) ARE THERE "3:1.
IFP< *BG0OS. 729: 6. 560

P.A.E:REST. :F.X=1T.R:REA™A$:N. X

P.A.E; "HOW MANY ":;A%$:" ARE NOT SHADED IN ";:I.P
IFP< >*AG0S.799:6.57
P.A.E:P.A.E+1;A:F=E/64%3+4:F.X=1T.8:5. (X,F):N.x«
P.A.E+128+1;R: IFR=AJ=1: A%$="WHOLES": 6. 601
REST.:F.X=1T.J:REA.A%:N. X: Y=J: IJ< >1J=A/C
Z=0:D=—1:F.P=1T.BRS.C:F.0=1T.C—1:W=1: IFP>AW=Z2
D=D+8: IFW=1S5.(D,Z):S8. (D, Z+2):R. (D—-1,Z+1):R. (D+1,7Z+1)
IFW=Z2F.X=0T.2S. (D, X+Z):N. X

N.0O:7=7Z+4:D=-1:N.P

IFR{ >AG. 610
Z=0:F.P=1T.RS.C: IFP>1G. (0,7Z-1):5. (Cx8-2,7-1)
IFP>1IF.X=1T.C%¥8B-Z:R. (X,Z—-2) : NX
IF(P{R)X(P>1)F.X=1T.CX¥8B-3:R. (X,Z):N.X

Z=7+4:N.P

P.A.E+74; "HOW MANY "3;A%$:;" DOES THAT EQUAL ";:I.P
IFP<>JP.A.E+74; "SORR, TRY AGAIN":F.G6=1T.500:N.G:G.610
IFA=RY=1

P.Q.E+1;J;A.E+129;Y;

P.A.E+122;"WELL DONE '":F.G=1T.299:N.G
C.:P.A.B263;:N.Q:.2

P.A.E; "SORRY, PLEASE COUNT AGAIN.":F.Y=1T.929y:N.Y:P.A.E:RET.

P.A.B96;: IFW=1P. "I GOT YOU '":Q=0+1

IFW=3P."AH '!'' YOU GT ME '":V=V+1
F.X=1T.S00:N. X

IFW=3T=T-1

P.ARB96; "HITS: ";V; " MISSES: ";U; " SHOTS LEFT:";T:
IFQ>OP." I’VE SHOT YOU";Q;"TME";: IF@>1P."S";
P."."::6.815

IFW=3U=U+1

G.x0S

IFT<>060S. 980: RET.

C.:P.A.460;: IFQ>VP. "1 WIN ! ":Q;"HIT";: IF@>1P. "S"
IFE>VP." TO";V:G.821

IFV>@P. "YOU WIN ' "3;Vi2HIT";: IFV>1P."§";
IFV>EP." TO":Q

IFQ=VYP. "WE CAME A DRAW !

F.X=1T.3000:NX:G.1

S. (AW ,A(2)+1)

F.X=AD T.AM +6:S. (X, A(2)):S. (X, A(2)+2) :N. X
S. (AW +6,A(2)+1) s RET.

F.X=AM T. AW +6:F. Y=A(W+1) T. (W+1)+2

R. (X,Y):N.Y:N.X:RET.

F.X=AMD T. AWM +6iF. Y=A(W+1) T.A(W+1) +2

S. (X,Y):N.Y:N.X:RET.

P.A.25; "< ROVING TARGETS >";
LA.17:F.X=0T.7:5. (X,0) :N. X:RET.

PAGE 12

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 13

*xxk%x SOLITAIRE L2/ 16K by T. Griffin *¥¥**

This is the well known game for one player involving a board full of pegs but with one vacant
space. The board is drawn on the screen as shown below and the player is requested to enter
the number of the peg he wishes to move and the position to which it is to be moved. The computer
ensures that all the rules are followed.

The program listing is well documented. Of particular note are lines 180 and 199. Here, the
identification numbers for each hole are printed by POKEing them directly into their correct
position 1in screen memory. This avoids the leading space which would have occurred had the
numbers been printed as variables and makes for a compact board layout.

20 DEFINTA-Z:G60T0540

30 CLS:CLEAR1000O

40 *

XXxxxxxx ARRAYS AND DATA FOR VALIDITY CHECKS, AND POSITIONS FOR
NUMBERS AND PEG MARKERS

S0 DIMV(33),C(33),P(33),N(33)

60 DATA13,14,15,22,23,24,29,30,31,32,33,34,35,38,39,40,41, 42,43,

44,47,48,49,50,51,52,53,58,59, 60,67, 68, 69

70 DATA148,154,160,276,282, 288,392,398, 404,410,416,422, 428,520,5

26,532,538,544,550,556, 648, 654, 660, bbb, 672,678, 684,788,794,800,91
6,922,928

80 DATASZ,88,94,210,216,222,326,332, 338,344,350, 356, 362, 454, 460,

466,472,478, 484, 490,582,588, 594, 600, 606,612, 618,722, 728,734,850,8
56,862

90 FORA=1TO33:READV(A):NEXTA

100 FORA=1TO33:READP (A) :NEXTA

110 *

XXXXXXxXx BOARD IS PRINTED HERE

120 AA$=CHR$ (170) : AB$=CHR$ (131) : AC$=CHR%$ (171) : AD$=CHR$ (149) : AE$=

CHR$ (129) : AF$=CHR% (130) : AG$=CHR$% (128) : AH$=CHR$ (143) : Y$=AH$+AH$: N$

=AG$+AG$: D$=STRINGS (4, AB$) +ACH+ADS$: E$=AGS+Y$+AGS+AAS+ADS

130 D3$=AA$+AD$+D$+D$+D%: D7$=AA$+AD$+D$+D$+D$+D$+Ds+Ds+D%: EI$=AA
$+AD$+ES+ES+ES: E7$=AAS+ADS+ES+ES+ES+ES+ES+E$+E$: B2$=AF$+STRINGS (1
1,ABR$) +AC$+AD$+D$+D$+STRINGS (4, ARS) +AC$+CHRS (151) +STRINGS (11, ARS)
+AE$

140 PRINT?19,"S OL I T A I R E";:PRINT281,D34%;:PRINT?145,E3$;::P

RINT2209,D3%; : PRINT2273, E3%;

150 PRINT9325,D7%::PRINT9389,E74%; : PRINT?453,D7%; : PRINT®517,E7%; :
PRINT®S81,D7%; : PRINT2645,E7%;

160 PRINT®2709,B2%; : PRINT?785,E34$; : PRINT2849,D3%; : PRINT?913, E3%; :
PRINT2977, AF$+STRING$ (18, AR$) +AE$:

170 °

¥XXXX¥xxx BOARD NUMBERS INSERTED HERE. NOTE....POKEING THEM STOPS
SPACES BEING INSERTED EITHER SIDE OF THE NUMBER.

180 FORX=1TO33:READN (X) : X$=STR% (X) : IFX<10POKE (N (X) +15360) , X+48:N
EXT

1920 X1=INT (X/10):POKE (N(X)+15360),X1+48: X2=X1%X10: X3=X—-X2: POKE (N(
X)+15361) , X3+48: NEXT

200 *

xxxxxxxx MIDDLE PEG REMOVED

210 PRINTaP(17),N$;:C(17)=-1

25 >
L L

XXxxxxxx "FROM?" AND "TO?" DISPLAYED

230 PRINT2372," "3 : PRINT2500, " "3 :PRINT2372,"F
ROM?" ; : C=0: Z=378: GOSUR280

240 F=N

250 PRINT2500,"TO?";:C=0: Z=504: GOSUR280

260 T=N:GOSUR3I60: GOSUR440: GOSUR470: GOTO230

270 °

XXXXxxxx MOVES ENTERED HERE BRY INKEY%, AND NUMBERS PROCESSED,
PRINTED, AND RETURNED FOR VALIDATION

280 A$=INKEY$: IFA$=""THEN280

290 IFA$="F"THEN490

300 IFA$=CHR% (13) THENRETURN

310 IFASC(A%$) >47ANDASC (A%$) <SB8THENN1=ASC (A%$) —48: C=C+1
320 IFC=1THENN=N1

330 IFC=2THENN=N1+ (NX10)

340 PRINT?Z,N;:60T0280

350 °

XXXxxxxx VALIDATION OF REQUESTED MOVE DONE HERE

360 IFF<10RF>330RT<10RT>33THEN420

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 14

F70 F1=V(F) : T1=V(T): J=ARS(F1-T1)

Z80 IFJ=20RJ=18THENZ20Q0ELSE420

F90 J1=(T1+F1) /2

400 FORJZ=1TOZZ: IFV (J2)=J1THEN410EL SENEXT

410 IFC(J2)=-10RC(F)=—-10RC(T)=0THEN420EL SE RETURN
420 C=0:60T0O2Z0

470 7

Xxxxxxxx UPDATE OF BOARD AND GAME MEMORY (ARRAY C)

440 PRINTDF (F) ,N$; :PRINTOP(T) ,Y$3 : PRINTIF (J2) ,N%;
450 C(F)=—1:C(T)=0:C(J2)=-1:5=5+1:RETURN

460 7

XXxxxxxx SCORE AND WIN MESSAGES

470 S§51=32-5: IFS1=1THENPRINT2627,"AT LAST! ! 11 ";:PRINT?621."YOU W
INt' ! s s ELSEPRINT2627,515 "REMAINING "3 :RETURN
480 *

XXxxxxxx GAME RESTART AND INTRODUCTION

490 PRINT2756, "PLAY AGAIN?";

S00 A$=INKEY$: IFA$=""THENS0QOQ

510 IFA$="Y"THENRUN

S20 IFA$="N"THENEND

S3Z0 GOTOS00

S40 CLS:PRINTTAR(Z1):;"S O L I TA I R E";

S50 PRINT®320,"THIS IS A STANDARD GAME OF SOLITAIRE. TO MOVE A
PIECE, ENTER"

S60 PRINT:PRINT" THE NUMBER OF IT’S SQUARE, AND THE NUMBER OF TH
E SEUARE YOU"

570 PRINT:FPRINT" WISH TO MOVE TO. TO FINISH THE GAME, ENTE
R ,F’.II
580 PRINT:PRINT" TO START THE GAME, PRESS ANY KEY."

590 A$=INKEY$: IFA$=""THENS?0EL SEZ0

***%* SEMAPHORE L2/4K by I.K. McAllister *¥kxx

This program is a fun way for boy scouts etc. to learn the semaphore system of signalling with
hand flags. The program will just fit into 4K if the REM statements are omitted from the beginning.
There are three levels: T

Level 1 displays the signal with the signaller facing away - i.e. his right hand is your right
hand, so you can copy the signal easily.

Intermediate has the signaller facing you, as would be the case when you receive a message.

In advanced level you may be required to interpret a signal received, or to build up a signal
being sent.

To learn, I suggest taking 5 letters at a time in level 1 (6 for the last group) at speed 9.
When you fail to name a signal the correct answer will be displayed for you to memorise. Having
learned all the alphabet, select A to Z and gradually increase the speed to 1. When you find
it easy to get a high score at speed 1 (and no longer confuse J with P) then select level 2,
A to Z, speed 9, and see how you go with the mirror images.

When you can handle speed 1 in both of these levels, go on to advanced level. Speed 1 may be
impossible for level 3, but you should reach speed 2. Remember an arm crossed over your chest
is always held lower than the other arm. Remember that the signaller faces you when you receive,
but away from you when you are "telling him" where to point his flags.

Line 39 sets up a table of equivalents for arm positions and letters of the alphabet.

Line 199 avoids a nonsense letter being selected by the RND function, e.g. if you select letters
Z to A the program will only use the letter A.

Lines 109 to 120 are the main control parts of the program. The rest is made up of subroutines,
mostly for the graphics.

One last twist: in level 3, any direction entered between the end of right hand input and the
input of the left hand is accepted as a left hand input. This is useful if you enter R & L
hands in quick succession. However, if you enter R.H. just too late, it is counted as left
hand, so you lose that point too. If you dislike this, then use EDIT 249 to insert :C$=INKEY$
immediately after the " mark following the words LEFT HAND.

20 CLEARS
F0 DIMA% (26) ,R(26),L (26)
40 DATAA,1,8,R,2,8,C.3,8:D.4:8.E.8.5.F.8.6,

yb!k:_!l.'“!'—! 1.5 M1:6:N, 1,7,0,3,2,FP,2,4,0,2,
Za5. Va8, 7 W 8,5, X, 705, Y T 652706

G,8:7.H,2,1,1.3,1.J.4
SaR:2:6:5:2,7, T, 3:4.U,

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 15

50 FORA=1T026: READA% (A) : READR (A) : READL (A) : NEXT

60 CLS
70 PRINT"WHAT LEVEL ARE YOU?":INPUT"1=BEGINNER,2=INTERMEDIATE, 3=
ADVANCED" ; K: IFK>3THENPRINT"WHAT?! ! ! ": GOTO70

80 PRINT"BETWEEN WHICH LETTERS DO YOU WANT TO PRACTICE? 1ST LETT
ER"; :L=1:60SUR340: PRINT"LAST"; : L=2: GOSUBR340
20 INPUT"HOW FAST(1TO?)--—1 IS FASTEST"; G: J=K: IFG>9THENPQELSEIFK=

ITHENJ=2

100 CLS:PRINT"THE LETTER ";A$(A);" IS";:GOSURS00:GOSUBS40:S=0:CL
5

110 H=N(2)-N(1)+1:A=RND(H)—1+N (1) : IFA<1THEN110ELSEONKGOTO120, 130
,140

120 J=1:60TO150

130 J=2:G0T0150

140 L=RND (2) : IFL=2G0TO230ELSEJ=2

150 PRINT®1, "WHAT LETTER IS THIS?":GOSUBRSQQ

160 FORP=1T0125%G:C$=INKEY$: IFC$=""THENNEXT

170 IFC$=A%(A) THENS=S+2: GOTO190

180 PRINT®1,CHR$(30) : PRINT®1,"THE LETTER IS ";A$(A):FORP=1T02500
:NEXT:S=5-2

190 CLS:PRINT2894, "YOUR SCORE IS ";S;:PRINT®1,"TO END HIT ANY KE
YII

200 C$=INKEY$:FORP=1T0125:C$=INKEY$: IFC$<>" " THEN22

210 NEXT:GOTO110

220 CLS:PRINTCHR$(23):PRINT"YOUR FINAL SCORE WAS";S;:END

230 CLS:GOSUBR490:PRINT®1, "XXLETTER ";A%$(A);"¥x*xIN WHICH DIRECTION
SHOULD YOU AIM YOUR RIGHT HAND?":FORP=1TO125%G:C$=INKEY$: IFC$=""
THENNEXT

240 F=R(A):R(A)=VAL (C$) : GOSUBS20: R (A) =F: IFR (A) =VAL (C$) THENS=S+1E
LSECLS: PRINT®1, "WRONG——THE RIGHT ONE IS":GOSUR490:GOSURS20:S=S-1
250 CLS:GOSUR490:PRINTD1, "XXLETTER ";A%$(A);"*XxIN WHICH DIRECTION
SHOULD YOU AIM YOUR LEFT HAND?":FORP=1TO125%G:C$=INKEY$: IFC$=""T
HENNEXT

260 F=L (A):L (A)=VAL (C$) : GOSURSI0:L (A) =F: IFL (A) =VAL (C$) THENS=S+1E
LSECLS: PRINT®1, "WRONG——THE RIGHT ONE IS":GOSUR490:GOSUBS3I0: S=S-1
270 CLS:GOTO190

280 FORX=3STO39:SET(X,14):SET(X,19) :NEXT:SET(34,15) :SET(40,15):S
ET(34,18):SET(40,18) : FORY=16T017:SET (33, Y) : SET(41,Y) :NEXT: FORY=15
TO17:SET(32,Y) :SET(42,Y) :NEXT

290 FORY=20T026:SET(37,Y) :NEXT: X=37: FORY=26T031: X=X-1:SET(X,Y):N

EXT: X=37:FORY=26TO31: X=X+1:SET (X, Y) :NEXT:SET (30, 31) : SET(44,31) : FO

RX=35TO39:SET (X, 21) : NEXT: RETURN

300 X=39:FORY=22T027: X=X+2:SET(X,Y) :NEXT: X=51: Y=27: GOSUR470: RETU

RN

210 FORX=40T061:SET (X,21) :NEXT: X=54: Y=21: GOSUR480: RETURN

320 X=57:FORY=13T020: X=X-2:SET (X, Y) : NEXT: X=55: Y=13: GOSUR470: RETU

RN

330 FORY=10TO20:SET(40,Y):NEXT: X=40: Y=10: GOSUR480: RETURN

340 INPUTC$:FORA=1T026: IFC$=A% (A) THENN (L) =AELSENEXT

350 RETURN

360 FORX=21TO34:SET (X,21) : NEXT: X=21: Y=21: GOSUR480: RETURN

370 X=40:FORY=22T027: X=X-2:SET (X, Y) : NEXT: X=28: Y=27: GOSUR470: RETU

RN

380 FORY=22T031:SET(40,Y):NEXT:RETURN

390 X=35:FORY=22T027: X=X-2:SET(X,Y) : NEXT: X=23: Y=27: GOSUR470: RETU

RN

400 FORX=21T034:SET (X, 21) :NEXT:X=13:Y=21: GOSUR480: RETURN

410 X=17:FORY=13T020: X=X+2:SET(X,Y) : NEXT: X=19: Y=13: GOSUB470: RETU

RN

420 FORY=10T020:SET(34,Y) :NEXT: X=27:Y=10: GOSUR480: RETURN

430 PRINT"NEVER CROSS ARMS UPWARD":GOSUBRS40:RETURN

440 FORX=40T045:SET(X,21):NEXT: X=46:Y=21:G0SUR480: RETURN

450 X=34:FORY=22T027: X=X+2:SET (X,Y) :NEXT: X=46: Y=27: GOSUR470: RETU

RN

460 FORY=22T031:SET (34,Y):NEXT:RETURN

470 FORD=(X—2) TO(X+2) :SET(D,Y+1) : SET(D, Y+3) : NEXT: FORD=(X—4) TO(X+
4) : SET (D, Y+2) : NEXT: SET (X, Y+4) : RETURN

480 FORD=XTO(X+7): FORZ=YTO(Y+3):SET(D, Z) :NEXTZ:NEXTD: RETURN

490 GOSUBR280:PRINT668, "1";:PRINT2481, "2"; : PRINT?220, "3"; : PRINT®
146,"4"; ;: PRINT®202, "S5"; : PRINT?451, "&6"; : PRINT®648, "7"; : PRINT?722, "

8"; :RETURN

500 GOSUR280: IFJ=2THENSET (36, 16) : SET (38, 16) : ONR (A) GOSUR390, 400, 4
10,420, 430, 440, 450, 460z ONL (A) GOSUR370, 360, 340,330, 320, 310,300, 380
:RETURN

510 GOSURS20:GOTOS3I0

520 ONR(A)GOSUB300, 310,320,330, 430, 360, 370, 380: RETURN

530 ONL (A) GOSUR450, 440, 430, 420, 410, 400, 390, 460: RETURN

540 FORP=1TO2000: NEXT:RETURN

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 16

**xxx THREE BILLY GOATS GRUFF L2/16K by R. Norman *¥x

This Basic program runs on a Level II 16K '80 and requires less than 6K of memory. Simply CLOAD
and RUN, then press the space bar (or any other key) to turn to the next page of the story.

Our justification (rationalisation) for buying a computer was that we wanted our children to
grow up thinking that computers are part of the furniture, and this program is part of an attempt
to make our children more interested in that item of furniture.

The program is an animated presentation of a well known children's tale. I chose this tale
for conversion to a program both because the story was my three year old son's favourite at the
time and because, with few characters and very little scenery, the graphics for the story are
relatively easy.

The text is very basic: it is a simplified version of a Ladybird book for beginner readers
(5-6 year olds). However, the program also appeals to those who are much younger (my 15 month
old daughter enjoys it thoroughly, though insists that the goats are dogs), and most adults
have found it entertaining.

From a programming point of view, the most interesting aspect of the program is the use of control
codes 26 and 24 within graphics characters. Control code 26 moves the cursor down one line;
control code 24 moves the cursor back one space. The use of these codes with the ordinary graphics
codes (128-191) permits the creation of a single graphics character occupying, say, three video
lines that can be moved around the screen as if it were a single letter or a single-line string,
provided that the boundaries of the screen are respected. An example of this can be found in
lines 410-449, which use the data in lines 160-209 to create a middle-sized goat (M$) that takes
up three lines of the screen. In lines 1979 and 1230 this string is moved as if it were a single-
line string. Note also the use of the graphics character '128', the blank character. It is
necessary to place these characters on the side that the overall graphics figure (e.g. the goat)
is coming from in order to prevent a trail of blobs being left behind. For example, the goats
move from left to right in the story, so that they must have blank characters on the left side.
(Note that the troll, which moves up and down, is an exception. It has blank characters on
top to cover the case where the troll descends, but I found that I could not place the characters
under the troll because they destroyed, and would not permit the reconstruction of, the bridge
while the troll was supposed to be standing on it. To cover this case I had to use a separate
variable, TC$, under the troll for the time that the troll was moving upwards - see lines 109
and 1800.

GET QUT OF MY WAY

80 CLS: CLEAR 1000

90 PRINTCHR$(23): PRINT®390, "THREE BILLY GOATS GRUFF"
100 C$=STRING$ (64, 128) : C2$=C$+C$: CI$=C$+C$+Cs: TC$=STRINGS (4, 128)
: G$=CHR% (164) +CHR% (184)

110 REM LITTLE GOAT

120 DATA 128,144,128,128,128,170,172

130 DATA 26,24,24,24,24,24,24,24

140 DATA 128,183,131,131,131,171,144

150 REM MIDDLE SIZED GOAT

160 DATA 128,128,128,128,128,144

170 DATA 26,24,24,24,24,24,24,24

180 DATA 128, 180,176,176,176,176,191,139

190 DATA 26,24,24,24,24,24,24,24,24

200 DATA 128, 183,131,131,131,131,171,144

210 REM LARGE GOAT

220 DATA 128,144,128,128,128,128,128, 183, 186,177
230 DATA 26,24,24,24,24,24,24,24,24,24,24

240 DATA 128, 189,188,188,188,188,188,191,131, 143

MICRO-80 PRODUCTS

PAGE 17

DON'T BE HELD BACK BY AN
ANTIQUATED DISK OPERATING SYSTEM

MOVE UPTO

NEWDOS 80 $149 incl. p&p

NEWDOS 80 is a completely new DOS for the TRS-80

SYSTEM 80. It is well-documented, bug free and

increases the power of your system many times over. It

is upward compatible with TRSDOS AND NEWDOS (ie

TRSDOS and NEWDOS+ programs will run on

NEWDOS 80 but the reverse is not necessarily so).

These are just a few of the many new features offered

by NEWDOS 80.

* New BASIC commands that support variable record

lengths up to 4095 bytes long.

Mix or match disk drives. Supports any track count

from 18 to 96. Use 35, 40, 77 or 80 track 5% inch

mini disk drives, 8 inch disk drives OR ANY COM-

BINATION.

An optional security boot-up for BASIC or machine

code application programs. User never sees ““DOS-

READY"” or “READY’ and is unable to "BREAK"”,

clear screen or issue any direct BASIC statements,

including “LIST".

New editing commands that allow program lines to

be deleted from one location and moved to another

or to allow the duplication of a program line with
the deletion of the original.

* Enhanced and improved RENUMBER that allows

relocation of subroutines.

Create powerful chain command files which will

control the operation of your system.

Device handling for routing to display and printer

simultaneously.

* MINIDOS — striking the D, F and G keys simul-

taneously calls up a MINIDOS which allows you to

perform many of the DOS commands without dis-
turbing the resident program.

Includes Superzap 3.0 which enables you to display/

print/modify any byte in memory or on disk.

Also includes the following utilities:

— Disk Editor/Assembler

— Disassembler (Z80 machine code)

— LM offset — allows transfers of any system tape
to Disk file — automatically relocated.

— LEVEL | — Lets you convert your computer back
to Level 1.

— LVIDKSL — Saves and loads Level 1 programs to
disk.

— DIRCHECK - Tests disk directories for errors
and lists them.

— ASPOOL — An automatic spooler which routes a
disk file to the printer whilst the computer con-
tinues to operate on other programs.

— LCDVR -- a lower case drives which display lower
case on the screen if you have fitted asimple lower
case modification.

MPI DISK DRIVES

HIGHER PERFORMANCE — LOWER PRICE
MPI is the second largest manufacturer of disk drives in
the world. MPI drives use the same form of head
control as 8'' drives and consequently, they have the
fastest track-to-track access time available — bmsec! All
MPI drives are capable of single or double-density
operation. Double-density operation requires the instal-
lation of a PERCOM doubler board in the expansion
interface.

As well as single head drives, MPI also makes dual-
head drives. A dual-head drive is almost as versatile as
two single-head drives but is much cheaper.

QOur MPI drives are supplied bare or in a metal cabinet
-- set up to operate with your TRS-80 or SYSTEM 80.
All drives are sold with a 90 day warranty and service is
available through MICRO-80 PRODUCTS.

MPI B51 40 Track Single Head Drive. only $349
MPI B52 40 Track Double Head Drive. only $449

Prices are for bare drives and include p&p. Add $10.00
per drive for a cabinet and $60.00 for a power supply
to suit two drives. 40 track drives are entirely compa-
tible with 35 track drives. A 40 track DOS such as
NEWDOS 80 is necessary to utilise the extra 5 tracks.

OVER 800 KILOBYTES ON ONE DISKETTE!
WITH MPI1 80 TRACK DRIVES

MPI 80 track drives are now available. The B91 80
track single-head drive stores 204 Kilobytes of for-
matted data on one side of a 5% inch diskette in single-
density mode. In double-density mode it stores 408
Kilobytes and loads/saves data twice as quickly.

The B92 80 track dual-head drive stores 204 Kilobytes
of formatted data on EACH side of a 5% inch diskette
in single-density mode. That's 408 Kilobytes per
diskette. In double-density mode, the B92 stores a
mammoth 408 Kilobytes per side or 816 Kilobytes of
formatted data per diskette. With two B92’'s and a
PERCOM double, you could have over 1.6 Megabytes
of on line storage for your TRS-80 for less than $1500!!

MP1 B91 80 Track Single Head Drive. only $499
MPI B92 80 Traci Dual Head Drive only $619

Prices are for bare drives and include p&p. Add $10.00
per drive for a cabinet and $60.00 for a power supply
to suit two drives. Note: 80 track drives will not read
diskettes written on a 35 or 40 track drive. If drives
with different track counts are to be operated on the
same system, NEWDOS 80 must be used.

DISK DRIVE USERS
ELIMINATEAIEIRC ERRORS
D
TRACK LOCKED OUT MESSAGES
FIT APERCOM DATA SEPARATOR
$37.00 plus $1.20 p&p.
When Tandy designed the TRS-80 expansion interface,
they did not include a data separator in the disk-
controller circuitry, despite the I.C. manufacturer’s
recommendations to do so. The result is that many
disk drive owners suffer a lot of Disk 1/0 errors. The
answer is a data separator. This unit fits inside your
expansion interface. It is supplied with full instructions
and is a must for the serious disk user.

CARE FOR YOUR DISK DRIVES?
THEN USE
3M's DISK DRIVE HEAD CLEANING DISKETTES
$30.20 incl. p&p.

Disk drives are expensive and so are diskettes. As with
any magnetic recording device, a disk drive works
better and lasts longer if the head is cleaned regularly.
In the past, the problem has been, how do you clean
the head without pulling the mechanism apart and run-
ning the risk of damaging delicate parts. 3M’s have
come to our rescue with SCOTCH BRAND, non-
abrasive, head cleaning diskettes which thoroughly
clean the head in seconds. The cleaning action is less
abrasive than an ordinary diskette and no residue is
left behind. Each kit contains:

— 2 head cleaning diskettes

— 1 bottle of cleaning fluid

— 1 bottle dispenser cap

PLEASE USE ORDER FORM ON PAGE 36

PAGE 18

USE TANDY PERIPHERALS ON YOUR SYSTEM-80

VIA
SYSPAND-80 - $97.50 incl. p&p

The SYSTEM-80 hardware is not compatible with the
TRS-80 in two important areas. The printer port is
addressed differently and the expansion bus is entirely
different. This means that SYSTEM-80 owners are
denied the wealth of economical, high performance
peripherals which have been developed for the TRS-80.
Until now, that is. MICRO-80 has developed the
SYSPAND-80 adaptor to overcome this problem. A
completely self-contained unit in a small cabinet which
matches the colour scheme of your computer, it con-
nects to the 50-way expansion part on the rear of your
SYSTEM 80 and generates the FULL Tandy 40 way
bus as well as providing a Centronics parallel printer
port. SYSPAND-80 enables you to run an Exatron
Stringy Floppy from your SYSTEM 80, or an LNW
Research expansion interface or any other desirable
peripherals designed to interface to the TRS-80 expan-
sion port. Make your SYSTEM 80 hardware compatible
with the TRS-80 via SYSPAND-80.

DISK DRIVE CABLES
SUITABLE FOR ANY DISK DRIVES

DC-2 2 Drive Connector Cable. $39 incl. p&p
DC-4 4 Drive Connector Cable. $49 incl. p&p

DOUBLE THE SPEED AND CAPACITY
OF YOUR DISK DRIVES
PERCOM DOUBLER ONLY $220
plus $2.00 p&p
Installing a Doubler is like buying another set of disk
drives, only much cheaper!! The doubler works with
most modern disk drives including:- MPI, Micropolis,
Pertec, TEAC (as supplied by Tandy). The doubler
installs in the TRS-80 expansion interface, the System-
80 expansion interface and the LNW Research expan-
sion interface in a few minutes without any soldering,
cutting of tracks, etc. It comes complete with its own
TRSDOS compatible double density operating system.

PROGRAMS BY MICROSOFT

EDITOR ASSEMBLER PLUS (L2/16K)

$37.50 + $1.20 p&p

A much improved editor-assembler and debug/monitor
for L2/16K TRS-80 or SYSTEM 80. Assembles directly
into memoty, supports macros and conditional assem-
bly, includes new commands-substitute, move, copy
and extend.

LEVEL 11 BASIC $59.95 plus $1.20 p&p
Loads on top of Level |l BASIC and gives advanced
graphics, automatic renumbering, single stroke instruc-
tions (shift-key entries) keyboard debounce, suitable
for L2/16K and up (Not Disk BASIC)

ADVENTURE ON DISK $35.95 plus $1.20 p&p
This is the original ADVENTURE game adapted for
the TRS-80. The game fills an entire diskette. Endless
variety and challenge as you seek to rise to the level of
Grand Master. Until you gain skill, there are whole
areas of the cave that you cannot enter. (Requires 32K
One Disk)

BASIC COMPILER $208 plus $2.00 p&p
New improved version, the Basic Compiler converts
Disk BASIC programs to machine code, automatically.
A compiled program runs, on average, 3-10 times faster
than the original BASIC program and is much more
difficult to pirate.

LE-ZAP Il — DOUBLE DENSITY PATCH
FOR NEWDOS 80
$53.00 plus $1.00 p&p

cable, automatically. If vy
diskette in drive @, say and a

write to drive @ in single density wh

at the same
time it reads/writes to drive 1 in double defsi

y!

FLOPPY DOCTOR AND MEMORY DIAGNOSTIC
(by MICRO CLINIC) $29.95 plus 50c. p&p
Two machine language programs on a diskette together
with manual which thoroughly test your disk drives
and memory. There are 19 possible error messages in
the disk drive test and their likely causes are explained
in the manual. Each pass of the memory tests checks
every address in RAM 520 times, including the space
normally occupied by the diagnostic program itself.
When an error occurs the address, expected data, and
actual data are printed out together with a detailed
error analysis showing the failing bit or bits, the corres-
ponding IC’s and their location. This is the most
thorough test routine available for TRS-80 disk users.

UPGRADE TO 16K
FOR ONLY $30.00!

MICRO-80's 16K MEMORY EXPANSION KIT
HAS BEEN REDUCED IN PRICE EVEN MORE

Larger volume means we buy better and we pass the
savings on to you. These are our proven, prime, branded
200 ns (yes, 200 nanosecond) chips. You will pay
much more elsewhere for slow, 350 ns. chips. Ours are
guaranteed for 12 months. A pair of DIP shunts is also
required to upgrade the CPU memory in the TRS-80 —
these cost an additional $4.00. All kits come complete
with full, step-by-step instructions which include
labelled photographs. No soldering is required. You do
not have to be an experienced electronic technician to
instal them.

BOOKS

LEVEL Il ROM REFERENCE MANUAL

$24.95 + $1.20 p&p

Over 70 pages packed full of useful information and
sample programs. Applies to both TRS-80andSYSTEM
80.

TRS-80 DISK AND OTHER MYSTERIES

$24.95 + $1.20 p&p

The hottest selling TRS-80 book in the U.S.A. Disk file
structures revealed, DOS’s compared and explained,
how to recover lost files, how to rebuild crashed
directories — this is a must for the serious Disk user
and is a perfect companion to any of the NEWDOS's.

LEARNING LEVEL 1l

$16.95 + $1.20 p&p

Written by Daniel Lien, the author of the TRS-80
Level | Handbook, this book teaches you, step-by-step,
how to get the most from your Level |l machine.
Invaluable supplement to either the TRS-80 Level ||
Manual or the System-80 Manuals.

MORE AUSTRALIAN SOFTWARE

All programs designed to run on both the TRS-80 or the SYSTEM 80 without modification. Most programs include sound

TRIAD VOL 1 - L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p

Three separate games which test your powers of memory and
concentration. The programs combine graphic displays and
sound:
SIMON-SEZ: Just like the electronic music puzzles on sale for
more than $20. Numbers are flashed on the screen and sounded
in a sequence determined by the computer. Your task is to
reproduce the sequence, correctly.
LINE?: Rather like a super, complicated version of noughts
and crosses. You may play against another player or against
the computer itself. But beware, the computer cheats!
SUPER CONCENTRATION: Just like the card game but with
more options. You must find the hidden pairs. You may play
against other people, play against the computer, play on your
own, or even let the ‘80 play on its own.

TRIAD VOL 2 - L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p

Remember those “NUMERO’ puzzles in which you had a
matrix of numbers (or letters) with one blank space and you
had to shuffle the numbers around one at a time until you
had made a particular pattern? Well, SHUFFLEBOARD, the
first program in this triad, is just this, except that the computer
counts the number of moves you take to match the pattern
it has generated — so it is not possible to cheat.
MIMIC is just like SHUFFLEBOARD except that you only
see the computer’s pattern for a brief spanat the beginning of
the game, then you must remember it!
In MATCHEM, you have to manoeuvre 20 pegs from the
centre of the screen to their respective holes in the top or
bottom rows. Your score is determined by the time taken to
select a peg, the route taken from the centre of the screen to
the hole and your ability to direct the peg into the hole with-
out hitting any other peg or the boundary.

VISURAMA L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p
Two programs which give fascinating, ever-changing patterns
on the screen.

LIFE is the fastest implementation of the Game of Life you
will see on your ‘80. Machine language routines create up to
1200 new generations per minute for small patterns or up to
100 per minute for the full 128 x 48 screen matrix. Features
full horizontal and vertical wraparound.

EPICYCLES will fascinate you for hours. The ever-changing
ever-moving patterns give a 3D effect and were inspired by the
ancient Greek theories of Ptolemy and his model of the Solar
system.

EDUCATION AND FUN - L1/4K, L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p
Written by a primary school teacher to make learning enjoy-

able for his pupils, there are five programs in both Level | and
Level Il to suit all systems:

BUG-A-LUG: a mathematics game, in which you must get the
sum correct before you can move.

AUSTRALIAN GEOGRAPHY: learn about Australian States
and towns, etc.

SUBTRACTION GAME: build a tower with correct answers.
HOW GOOD IS YOUR MATHS? Select the function (+, —,
— or X) and degree of difficulty.

HANGMAN: That well known word game now on your
computer.

Recommended for children from 6 to 9 years.

COSMIC FIGHTER & SPACE JUNK — L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p

Both programs have sound to complement their excellent
graphics. In COSMIC FIGHTER, you must defend the earth
against seven different types of alien aircraft. It is unlikely that
you will be successful but you will have a lot of fun trying!
You mission in SPACE JUNK is to clean up all the debris left
floating around in space by those other space games. It is not
as simple as it sounds and space junk can be quite dangerous
unless you are very careful.

SPACE DRIVE L2/4K & 16K
Cassette $8.95 Disk $13.95
+ 60c p&p
Try to manoeuvre your space ship through the meteor storms

then land it carefully at the space port without running out of
fuel or crashing. Complete with realistic graphics.

STARFIRE AND NOVA INVASION L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p

Both programs include sound to improve their realism.
STARFIRE seats you in the cockpit of an X-wing fighter as
you engage in battle with the deadly Darth Vader's Tie-fighters.
Beware of the evil one himself and may the Force be with you.
In NOVA INVASION, you must protect your home planet of
Hiberna from the invading NOVADIANS. You have two fixed
guns at each side of the screen and a moveable one at the
bottom. Apart from shooting down as many invaders as
possible, you must protect your precious hoard of Vitaminium
or perish!

AIR ATTACK AND NAG RACE — L2/16K
Cassette $10.95 Disk $15.95
+ 60c p&p
An unlikely combination of programs but they share the same
author who has a keen sense of humour.
AIR ATTACK includes sound and realistic graphics. The air-
craft even have rotating propellors! But they also drop bombs
on you, so it's kill or be killed!
NAG RACE lets you pander to your gambling instinct without
actually losing real money. Up to five punters can join in the
fun. Each race results in a photo-finish whilst there is a visible
race commentary at the bottom of the screen throughout the
race. Happy punting!

FOUR LETTER MASTERMIND L2/16K
Cassette $8.95 Disk $13.95
+ 60c p&p

There are 550 four-letter words from which the computer can
make its choice. You have 12 chances to enter the correct
word. After each try, the computer informs you of the number
of correct letters and those in the correct position. You can
peek at the list of possible words but it will cost you points.
Makes learning to spell fun.

MUSIC IV — L2/16K
Cassette $8.95 Disk $13.95
+60c p&p
Music IV is a music compiler for your ‘80. It allows you to
compose or reproduce music with your computer that will
surprise you with its range and quality. You have control over
duration (full beat to 1/16 beat) with modifications to extend
the duration by half or one third for triplets. Both sharps and
flats are catered for as are rests. Notes on whole sections may
be repeated. The program comes with sample data for a well-
known tuneto illustrate how itis done.

x SAVE 008's » x x SAVE 00$'s » » » SAVE 00$'s » » « MICRO-80 EXPANSION INTERFACE » » »

MICRO-80’s expansion interface utilises the proven LNW Research Expansion board. It is supplied fully built up and tested in an
attractive cabinet with a self contained power supply, ready to plug in and go. The expansion interface carries MICRO-80s full, no

hassle, 90-day warranty.

Features include:- @ Sockets for up to 32K of memory expansion ® Disk controller for up to 4 disk drives e Parallel printer port
@ Serial RS232C/20mA 1/0 port e Second cassette (optional)

The expansion interface connects directly to your TRS-80 L2/16K keyboard or,via SYSPAND-80 to your SYSTEM-80VIDEO GENIE
Prices: HD-010-A Expansion Interfaces with @ K :$499.00 HD-010-B Expansion Interfaces with 32K :$549.00 HD-011 Data
separator fitted (recommended) : add $29.00 HD-012 Dual cassette Interfaces fitted : add $19.00

The MICRO-80 Expansion Interface is also available in kit form.
Prices: HD-013 Kit consisting of LNW Research PC board and manual, ALL components including cabinet & power supply : $375.00
HD-011 Data separator for above $25.00 HD-013 Dual cassette Interface kit : $15.00

A choice of upper and lower case display is easier to read,
gives greater versatility

The Micro-80 lower case modification gives you this facility,
plus the symbols for the 4 playing-card suits for $49.00 +
$2.00p.& p.

The Micro-80 modification features true below-the-line
descenders and a block cursor.

Each kit comes with comprehensive fitting instructions
and two universal lower-case drive routines on cassette to
enable you to display lower case in BASIC programs.

Thedriver routines are self-relocating, self-protectingand
will co-reside with other machine language programs such
as Keyboard-debounce,serialinterface driver programs etc.

Both programs give your TRS- 80" Model | or System 80"
an optional typewriter capability, i.e. shift for upper case

The second programme also includes Keyboard-debounce
and a flashing cursor.

You fit it. Or we can.

Fitting the modification requires soldering inside the
computer. This should only be carried outby an experienced
hobbyist or technician.

If you are at all dubious, a fitting service is available in all
capital cities for only $20.00.

A list of installers is included with each kit.

Save $120 now.

ADD A DISK DRIVE TO YOUR TRS-80 "MODEL i
FOR ONLY $875.00 OR ADD TWO FOR ONLY $1199.

Daisy Wheel Typewriter/Printer

MICRO-80 has converted the new OLIVETTI ET-121 DAISY WHEEL typewriter
SYSTEM 80 or any other microcomputer
with a Centronics parallel port (RS 232 serial interface available
The ET-121 typewriter is renowned for its high quality,
MICRO-80

to work with the TRS-80 and

shortly).
fast speed (17 c.p.s.), quietness and reliability.
renowned for its knowledge of the TRS-80/SYSTEM 80 and its
pricing policy.
an attractive, modern,
correspondence quality Daisy-wheel printer when
micro-computer.

How good is it?

an ET-121 driven by a TRS-80. Write and ask for full details.

sensible
Together, we have produced a dual-purpose machine:-
correcting typewriter which doubles as
used with your

- This part of our advertisement was typeset using

The Micro-80 disk drive upgrade for the TRS-80" Model |11
contains the following high quality components:

1 or 2 MPI 40-track single head disk drives, 1 VR Data
double-density disk controller board and 1 dual drive power
supply plus all the necessary mounting hardware, cables and
comprehensive fitting instructions, which can be carried out
with a minimum of fuss by any average computer owner.
Fitting service is available for $25.00 in most capital cities.

ONLY $2049 INC. S.T.

is

a

1.4 MEGABYTES ON LINE +48K RAM
fOl‘ $3800 incl. Sales Tax

MICRO-80’s
MODEL 380 +

MICRO-80 has equipped the TRS-80 with two high reliability dual-head 80 track mini-
floppy disk drives made by MPI, one of America’s leading mini-disk drive manufacturers.

This turns the mild-mannered Model 3 into a powerhouse able to handle the most dif-
ficult business programs. The TRS-80 is one of the best-supported microcomputers in the
world. MICRO-80 has been supporting the TRS-80 in Australia for 18 months and is one
of Australia’s leading dealers in MPI disk drives.

2.8 MEGABYTES FOR $5300 incl. Sales Tax

If you need even more file space you can add MICRO-80’s external dual-drive cabinet
enclosing two more dual-head 80 track drives for an additional *1500.

COMPUTER PRICES

MODEL 340
2 40 TRACK SINGLE HEAD DRIVES GIVING -
350K FORMATTED STORAGE, 48K RAM $200() e saLes TAx

MODEL 340 +
2 40 TRACK DUAL-HEAD DRIVES GIVING
700K FORMATTED STORAGE, 48K RAM $3350 incL saes tax

MODEL 380
2 80 TRACK SINGLE HEAD DRIVES GIVING
700K FORMATTED STORAGE, 48K RAM $3350 ncL sates Tax

MODEL 380 +
2 80 TRACK DUAL-HEAD DRIVES GIVING S
1.4 MEGABYTE FORMATTED STORAGE, 48K RAM 3800 ner saLesTax

350K SYSTEM
MODEL 340, EPSON MX-80 PRINTER
NEWDOS 80 DISK OPERATING SYSTEM SA4070 el saLes Tax

700K SYSTEM (40 Track)
MODEL 340 + . EPSON MX-80 PRINTER
NEWDOS 80 DISK OPERATING SYSTEM $4429 el salesTax

700K SYSTEM (80 Track)
MODEL 380, EPSON MX-80 PRINTER
NEWDOS 80 DISK OPERATING SYSTEM 54429 incL saLesTax

1.4 MEGABYTE SYSTEM
MODEL 380 + , EPSON MX-80 PRINTER
NEWDOS 80 OPERATING SYSTEM SA88(0) IncL saLEsTax

2.8 MEGABYTE SYSTEM

MODEL 380 +, DUAL EXTERNAL DRIVES, s
MX-80 PRINTER, NEWDOS 80 OPERATING SYSTEM 6380 ne satesTax

*
EXATRON STRINGY FLOPPY — $372.50 incl. p&p

All Exatron Stringy Floppies sold by MICRO-80 include the special chained version of
HOUSEHOLD ACCOUNTS, developed by Charlie Bartlett, When used on the ESF, this pro-
gram is powerful enough to perform many of the accounting functions in a small
business. Remember, the ESF comes complete with a comprehensive manual, a 2 way
bus-extender cable, its own power supply and 10 wafers of mixed length. One wafer
contfains the Data Input/Output program and. another the HOUSEHOLD ACCOUNTS
program.
CAN’T MAKE UP YOUR MIND ABOUT THE ESF?

Then send in $5.00 for a copy of the manual. We will refund your $5.00 IN FULL when you

purchase an ESF.

All prices subject to change without notice. Prices are F.O.B. Adelaide. All computers and systems carry MICRO-80’s
90-day Warranty covering parts and labour.

PAGE 19

SOFTWARE BY AUSTRALIAN AUTHORS

All our software is suitable for either the SYSTEM 80 or the TRS-80

NEW SOFTWARE FROM MICRO-80 PRODUCTS
BUSINESS PROGRAMS

MICROMANAGEMENT
STOCK RECORDING SYSTEM (L2/16K)
Cassette version. $29.95 + $1.00 p&p
Stringy Floppy version. $33.95 + $1.00 p&p
This system has been in use for 9 months in a number
of small retail businesses in Adelaide. It is therefore
thoroughly debugged and has been tailor made to suit
the requirements of a small business. MICROMANAGE-
MENT SRC enables you to monitor the current stock
level and reorder levels of 500 different stock items per
tape or wafer. It includes the following features: —
— Add new items to inventory
— Delete discontinued items from inventory
-— List complete file
— Search for any stock number
— Save data to cassette or wafer
— Load data from cassette or wafer
— Adjusts stock levels from sales results and receipt
of goods
— List all items requiring reordering
We can thoroughly recommend this program for the
small business with a L2/16K computer.

BMON by Edwin Paay $19.95 plus 50c. p&
THE ULTIMATE HIGH MEMORY BASIC MONITO
L2/16-48K

Our own personnel refuse to write BASIC without first
loading this amazing machine language utility program
into high memory! BMON Renumbers; Displays BASIC
programs on the screen while they are still loading; tells
you the memory locations of the program just loaded;
lets you stop a load part-way through; merges two
programs, with automatic renumbering of the second
so as to prevent any clashes of line numbers; recovers
your program even though you did type NEW: makes
one program invisible while you work on a second
(saves hours of cassette time!); lists all the variables
used in the program; makes SYSTEM tapes; lets you
Edit memory directly . . . the list goes on and on.
Cassette comes with 16K, 32K and 48K versions, ready
to load. Can anyone afford NOT to have BMON?

SCOTCH BRAND COMPUTING CASSETTES
Super-quality personal computing cassettes.
C-10 pack of 10 ... $26.00 incl. p&p
C-30pack of 10 ...$28.00 incl. p&p

UTILITIES
S-KEY by Edwin Paay $15.95 plus 50c. p&p

S-KEY is a complete keyboard driver routine for the
TRS-80 and becomes part of the Level Il basic inter-
preter. With S-KEY loaded the user will have many
new features not available with the standard machine.
S-KEY features:

* S-KEY provides an auto-repeat for all the keys on
the keyboard. If any key is held down longer than
about half a second, the key will repeat until it is
released.

Graphic symbols can be typed direct from the key-
board, this includes all 64 graphic symbols available
from the TRS-80/SYSTEM 80.

S-KEY allows text, BASIC commands and/or
graphics to be defined to shifted keys. This makes
programming much easier as whole commands and
statements can be recalled by typing shift and a
letter key.

Because S-KEY allows graphics to be typed directly
from the keyboard, animation and fast graphics are
easily implemented by typing the appropriate
graphics symbols directly into PRINT statements.
S-KEY allows the user to LIST a program with
PRINT statements containing graphics, properly.
S-KEY does this by intercepting the LIST routine
when necessary.

S-KEY allows the user to list an updated list of the
shift key entries to the video display or line printer.
S-KEY can be disabled and enabled when required.
This allows other routines which take control of the
keyboard to run with S-KEY as well.

Each cassette has TRS-80, DISK and SYSTEM 80
versions and comes with comprehensive documentation.

EDUCATIONAL

RPN CALCULATOR (L2/16K & 32K)

$14.95 $ 50c. p&p

Give your computer the power of a $650 reverse polish
notation calculator with 45 functions and selectable
accuracy of 8 or 16 digits. The main stack and registers
are continuously displayed whilst the menu is always
instantly accessible without disturbing any calculations
or register values. The cassette comes with both the
16K and 32K versions, the latter giving you the addi-
tional power of a programmable calculator. Comes
with a very comprehensive 15 page manual, which
includes instructions to load and modify the 32K pro-
grammable version to run in 16K. Whether for business
or pleasure, this package will prove invaluable, and turn
you ‘80 into a very powerful instrument.

GAMES
MICROPOLY (L2/16K) $8.95 + 60c p&p

Now you can play Monopoly on your micro. The old
favourite board game has moved into the electronic era.
This computer version displays the board on the screen,
obeys all the rules and, best of all, the banker does not
make mistakes with your change!

CONCENTRATION (L2/16K) $8.95 + 60c p&p
Another application of supergraphics. There are 28
“cards’’ displayed on the screen, face down. Players
take it in turn to turn them over with the object of
finding matching pairs. There are 40 different patterns
which are chosen at random, so the game is full of end-
less variety. This is of particular value in helping young
children to learn the art of concentrating and, at the
same time, to introduce them to the computer.

METEOR AND TORPEDO ALLEY (L2/16K)

$10.95 + 60c p&p

Those who frequent games arcades will recognize these
two electronic games. In METEOR you must destroy
the enemy space ships before they see you. In its most
difficult mode, the odds are a thumping 238 to 1
against you being successful. In torpedo alley you must
sink the enemy ships without hitting your own supply
ship. Both games include sound effects and are remark-
ably accurate reproductions of the arcade games.

PAGE 20

AUSTRALIAN SOFTWARE (Cont.)

GAMES
SHEEPDOG (L2/16K) $8.95 + 60c p&p

Ever wondered how a sheepdog manages to drive all
those awkward sheep into a pen? Well, here is your
chance to find out just how difficult it is and have a
lot of fun at the same time. You control the sheepdog,
the computer controls the sheep! As if that isn't
enough, look out for the dingoes lurking in the bush!

U BOAT $8.95 + 60c p&p
Real time simulation at its best! Comes with working
sonar-screen and periscope, a full rack of torpedoes,
plenty of targets, working fuel and battery meters,
helpful Mothership for high-seas reprovisioning and
even has emergency radio for that terrible moment
when the depth charges put your crew at risk. Requires
Level 11/16K.

SPACE INVADERSWITH SOUND $8.95 + 60c p&p
Much improved version of this arcade favourite with
redesigned laser and cannon blasts, high-speed cannon,
50 roving drone targets, 10 motherships and heaps of
fun for all. Level Il with 4K and 16K versions on this
cassette.

GOLF (L2/16K) $8.95 + 60c p&p
Pit your skills-of mini-golf against the computer. Choose
the level of difficulty, the number of holes and whether
you want to play straight mini golf or crazy golf. Com-
plete with hazards, water traps, bunkers and trees.
Great fun for kids of all ages.

DOMINOES(L2/16K) $8.95+60c p&p
Pit your skill at dominoes against the computer, which
provides a tireless opponent. Another application of
supergraphics from the stable of Charlie Bartlett.
Dominoes are shown approximately life size in full
detail (except for colour!). The monitor screen is a
window which you can move from one end of the
string of dominoes to the other. Best of all, you don’t
lose any pieces between games!

KID'S STUFF (formerly MMM-1) $8.95 + 60c p&p
Three games on one cassette from that master of TRS-
80 graphics, Charlie Bartlett. Includes INDY 500, an
exciting road race that gets faster and faster the longer
you play, SUBHUNT in which your warship blows up
unfortunate little submarines all over the place, and
KNIEVEL (as in motorcycle, ramp and buses).

LOWER CASE FOR YOUR TRS-80/SYSTEM 80
Kit only $49.00 plus $2.00 p&p

Give your TRS-80 or SYSTEM 80 a lower case display
with proper descenders and a block cursor (similar to
the TRS-80 Model IIl). Also includes symbols for the
four suits of cards. Includes full fitting instructions, all
necessary components and a special machine language
driver program to enable lower case in BASIC. The
modification is similar to the Tandy model and does
not work with Electric Pencil without further modifi-
cations.
These kits require disassembly of your computer and
some soldering. They should only be installed by
someone who has experience in soldering integrated
circuits, using a low power, properly earthed soldering
iron. If you do not have the necessary experience/
equipment, we will install the modification for you for
$20 plus freight in both directions. Make sure you
arrange the installation with us first, before despatch-
ing your computer, so that we can assure you of a
rapid turn-around. We are also arranging to have
installers in each State. See elsewhere in this issue for
their names and addresses.
PRICES

Cat No.
HD-020 Lower case mod kit for TRS-80

$49.00 plus $2.00 p&p
HD-021 Lower case mod kit for SYSTEM-80

$49.00 plus $2.00 p&p

OTHER PROGRAMS

INFINITE BASIC BY RACET (32K/1 DISK)

$49.95 + 50c. p&p

Full matrix functions — 30 BASIC commands; 50 more
STRING functions as BASIC commands.

GSF/L2/48K $24.95 +50c. p&p

18 machine language routines including RACET sorts.

BUSINESS ADDRESS AND INFORMATION SYSTEM
(48K/DISK) $24.95 + 50c. p&p
Allows you to store addresses and information about
businesses, edit them and print them out.

HISPED (L216, 32 or 48K) $29.95

This machine language program allows you to SAVE
and LOAD programs and data to tape at speeds up to
2000 band (4 times normal) using a standard cassette

recorder. A switch must be installed to remove the
XRX |1l loading board, if fitted.

EPSON MX-80 PRINTER

ONLY *$949 Inc. Cable for TRS-80 and p&p
(*Printer only — $940 incl. p&p)
The EPSON MX-80 printer is compact, quiet, has
features unheard of only 2-3 years ago in a printer at
any price and, above all, is ultra-reliable. All available
print modes may be selected under software control.
Features include:
— high quality 9x9 dot-matrix character formation
— 3 character densities
. 80 characters per line at 10 chars/inch
.132 characters per line at 16.5 chars/inch
. 40 characters per line at 5 chars/inch
— 2 line spacings
6 lines per inch 8 lines per inch
— 80 characters per second print speed
— bi-directional printing
— logical seeking of shortest path for printing
— lower case with descenders
— TRS-80 graphics characters built in
— standard Centronics printer port
The bi-directional printing coupled with the logical
seeking of the shortest print path (which means that
the print head will commence printing the next line
from the end which requires the least travel, thereby
minimising unutilised time) gives this printer a much
higher throughput rate than many other printers
quoting print speeds of 120 c.p.s. or even higher.

GREEN SCREEN SIMULATOR
$9.50 incl. p&p

The GREEN SCREEN SIMULATOR is made from a
deep green perspex, cut to fit your monitor. It improves
contrast and is much more restful to the eyes than the
normal grey and white image.

All editorial staff of MICRO-80 are now usingGREEN
SCREEN SIMULATORS on their own monitors.

Please make sure to specify whether you have an old
(squarish) or new (rounded) style monitor when order-
ing. Not available for Dick Smith monitors.

ISSUE 22 (SEPTEMBER 1981)

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
200
510
520
2930
540
950
960
570
280
990
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800

MICRO-80

DATA 26,24,24,24,24,24,24,24,24,24,24

DATA 128, 181,128,

REM TROLL

128,128,128, 128,170, 144

DATA 128,128,128,128,128,128,128,128
DATA 26,24,24,24,24,24,24,24,24

DATA 176,176,176,187,183,176,176,176
DATA 26,24,24,24,24,24,24,24,24

DATA 128,128,170,191,191,149,128,128
DATA 26,24,24,24,24,24,24

DATA 186,149,170,181

REM LITTLE GOAT
FOR I=1 TO 22
READ L
L$=L$+CHR% (L)
NEXT I

REM MIDDLE-SIZED GOAT

FOR I=1 TO 39
READ M
M$=M$+CHR$ (M)
NEXT I

REM LARGE GOAT
FOR I=1 TO 51
READ R
B$=B$+CHR% (BR)
NEXT I

REM TROLL

FOR I=1 TO 53
READ T
T$=T$+CHR$ (T)
NEXT I

REM INTRODUCE CHARACTERS

CLS

PRINT"THIS IS THE
PRINT"HE LIKES TO
PRINT2452,L$
GOSUR 1930

CLS

PRINT"THIS IS THE
PRINT"HE LIKES TO
PRINT2388, M$
GOSUR 1930

CLS

PRINT"THIS IS THE
PRINT"HE LIKES TO
PRINT2388, B$%
GOSUR 1930

CLS

PRINT"THIS IS THE

LITTLE BILLY GOAT GRUFF"
JUMP

MIDDLE-SIZED RILLY GOAT GRUFF"
HAVE FUN"

BIG BILLY GOAT GRUFF"
EAT GRASS"

TROLL"™

PRINT"HE LIVES UNDER A BRIDGE"

PRINT2611,T$
GOSUR 1930

PRINT2128, "HERE IS THE BRIDGE"

GOSUR 1850 :GOSUR
REM START STORY
PRINT20,C3%

PRINT®20, "THE GOATS ARE HUNGRY":PRINT"THEY WANT TO GO OVER TH

1930

E BRIDGE FOR SOME GRASS"

810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

GOSUR 1940
PRINT20,C2%

PRINT20, "HERE COMES LITTLE RILLY GOAT GRUFF"

GOSUR 1930
GOSUR 19260

FOR N=384 TO 410:PRINTIN,L$;:FOR Z=1 TO 20:NEXT Z,N

PRINT20,C2%
GOSUR 1930
GOSUR 17350
GOSUR 1820
GOSUR 2000
GOSUR 1930
PRINT®2104,C2%
GOSUR 2040
PRINT®264,C3%;
GOSUR 2090
GOSUR 1930
GOSUR 2130
GOSUR 1820

1000 GOSUR1970

1010 FOR N=411 TO 440:PRINTIN,L$3;:FOR Z=1 TO 20:NEXTZ,N

PAGE 21

i

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 22

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1620
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

PRINT20,C$

PRINT2384,C2%;

PRINT20, "HERE COMES MIDDLE SIZED BILLY GOAT GRUFF"
GOSUR 1930

GOSUR 1940

FOR N=321 TO 346:PRINTAN,M$;:FOR Z=1 TO 20:NEXTZ,N
GOSUR 1930

PRINT®0,C$

GOSUR 1930

GOSUR 1750

GOSUR 1820

GOSUR 2000

GOSUR 1930

PRINT2104,C2%

GOSUR 2040

PRINT264,C3%;

GOSUR 2090

GOSUR 1930

GOSUR 2130

GOSUR 1820

GOSUR 1970

FOR N=347 TO 376:PRINTON,M$;:FOR Z=1 TO 20:NEXTZ,N
PRINT2320, C3%;

PRINT®0, "HERE COMES RIG RILLY GOAT GRUFF"

GOSUR 1930

GOSUR 1970

FOR N=321 TO 340:PRINTAN,B$;:FOR Z=1 TO 10:NEXTZ,N
GOSUR 1930

PRINT20,C$

GOSUR 1930

GOSUBR 1750

GOSUR 1820

GOSUR 2000

GOSUR 1930

PRINT20,C3%

PRINT®71, "GET OUT OF MY WAY"

GOSUR 1930

PRINT?135,"I°M GOING TO PASS"

GOSUR 1930

PRINT®64,C2%

FOR N=340 TO 345:PRINTIN,B$;:FOR Z=1 TO 20:NEXTZ,N
FOR M=1 TO 4:PRINT2291-M%64,T$;:PRINTS549-M264, TC$s : NEXTM
FOR M=0 TO 9:PRINT®3IS+&64%M,T$;:NEXTM

GOSUR 1820

FOR M=10 TO 11:PRINT235+64%M,T$;:NEXTM
TC$=STRINGS (8, 128) : TM$=STRINGS$ (8, 182)
PRINT675+64, TC$;

PRINT?675+128, TC$;

PRINTD&675+192, TM$;

PRINTD675+256, TM$;

GOSUR 1970

FOR N=345 TO 373:PRINTON,B$::FOR Z=1 TO 20:NEXTZ,N
PRINT®320, C3%;

PRINT20,C$

GOSUR 1930

CLS

PRINT"HERE IS THE OTHER SIDE OF THE STREAM"

GOSUR 1930

PRINT20, "HERE IS THE GRASS ON THE OTHER SIDE OF THE STREAM"
FOR N=1 TO 100

R=RND (831) +192: PRINTAR, G$;

NEXT N

GOSUR 1930

PRINT®0, "HERE ARE THE GOATS ON THE OTHER SIDE OF THE STREAM

GOSUBR 1930
PRINT®395,L%; : PRINT2540, M$; : PRINT2745, B$;
GOSUR1930

PRINT®64, "THEY HAVE LOTS OF GRASS":GOSUR 1930
PRINT®128, "THEY ARE HAPPY"

GOSUR 1930

CLS

PRINTCHR$ (23) : PRINT2404, "THE END"

GOTO 1740

REM TROLL UP

PRINT®0, "UP JUMPS THE TROLL"

GOSUR 1930

PRINT?0,C$

FOR M= 1 TO S

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 23

1800 PRINT2611-M%64, T$; : PRINTO869-Mx64, TCH;
1810 NEXT M:RETURN
1820 REM REPAIR BRIDGE
1830 FOR X=70 TO 85:SET(X,24):NEXT X:RETURN
1840 END
1850 REM DRAW BRIDGE
1860 FOR X=0 TO 127
1870 SET(X,28)
1880 NEXT X
1890 FOR Y=25 TO 41
1900 SET(47,Y):SET(53,Y):SET(95,Y):SET(101,Y)
1910 NEXT Y
1920 RETURN
1930 REM SPACE-BAR TO PROCEED SEQUENCE
1940 P$=INKEY$:IF P$="" THEN 1940
1950 RETURN
1960 PRINT20,C$
1970 PRINT20,"TRIP TRAP, TRIP TRAP, TRIP TRAP"
1980 RETURN
1990 END
2000 REM STOP DIALOGUE
2010 PRINT9104, "STOP"
2020 PRINT2168,"I WANT TO EAT YOU UP"
2030 RETURN
2040 REM EAT BROTHER
2050 PRIMT®71,"NO, DON’T EAT ME"
2060 GOSUR 1930
2070 PRINT®135,"EAT MY BROTHER":GOSUR 1930
2080 PRINT2199,"HE IS FATTER THAN I AM":GOSUR1930 :RETURN
2090 REM CROSS BRIDGE SERUENCE
2100 PRINT®148, "YOU MAY CROSS THE BRIDGE";:GOSUR 1930
2110 PRINT2128,C2%;
2120 RETURN
2130 REM TROLL DOWN
2140 FOR M=1 TO 5
2150 PRINT2291+M%64, T$;
2160 NEXT M
2170 RETURN
TR

*kkkk MOVIE L/4K ml. by M. White falalalelo

A machine code routine to allow two new commands in BASIC to provide easy animation of games
displays. The idea for these commands came from the game "Super-Sizzle¥" published in MICRO-
80 and, in fact, these commands will drive the assembled car off the screen quite realistically
in a modified "Super-Sizzler" game.

The commands are unused Disk BASIC commands and are suitable for use with Level II BASIC only.
They operate by scrolling a range of lines on the screen, either left or right and with or without
wraparound. A single line will scroll much faster than a full screen. Scroll speed is controlled
in BASIC using a timing loop.

The two commands are:

LSET (Argl, Arg2, Arg3)
RSET (Argl, Arg2, Arg3)

LSET moves a block of lines one field left.

RSET moves a block of lines one field right.

Argl is the top line of the block move in the range @ to 15 and may be a constant or variable
of any type except string.

Arg2 is the bottom line of the block move and may be a constant or variable of any type except
string.

Arg 3. If the value is @ the scrolling will wrap around - if any other value it will run off
the screen. It similarly can be a constant or variable.

Out of range arguments will return values set to limit of legal range instead of error.

Typical uses in games would be to set up rows of moving targets such as ducks or spaceships.
Different rows of targets can be moving in opposite directions and/or at different speeds.
One word of warning, any missile or bullet moving up through a moving zone will itself be moved
sideways by these routines and this will need to be compensated for.

The source code 1listing is well documented with remarks. Some of the more significant routines
are:

- EVAL which is called to evaluate the argument to the command. It sets the HL register to
point to the start of each argument and calls GET to return the value as a screen address.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 24

- Routine 'GET' tests whether the argument 1is a constant or a variable and converts it to
an integer constant. This 1is tested for range error and any out of range value is reset
to the nearest legal value in the range § to 15. It is then multiplied by 4¢H and added
to 3CAPH to return a screen address.

The main routine then executes a 'LDDR' or 'LDIR' dinstruction to move a line on the screen.
It then calls routine 'UPDATE' to check if that is the last line to be moved and to wrap
around the line if required.

If you have an Editor/Assembler, you may type in the source code listing (columns 3, 4, 5 and
6). You may then Assemble the code and punch an object tape.

If you do not have an Editor/Assembler, you may use a monitor program such as BMON. (TBUG is
not satisfactory as it loads into the same area in memory as MOVIE). (BMON was published in
MICRO-80 Issues 3, 4 and 5 or is available on cassette for $19.95). To enter the program, use
the Edit Memory function, starting at 42E9 Hex. The hex listing is contained in columns 1 and
2 of the listing. Change the value stored at 42E9 to 21, at 42EA to 99, at 42EB to 44, at 42EC
to AF, at 42ED to 77 and so on until you reach 4498 which should be changed to C9. Break out
of the Edit mode and Copy memory to tape using the following parameters:

START END ENTRY NAME

42E9 4498 42E9 MOVIE

To load from tape, type in SYSTEM, answer *? with MOVIE, press ENTER/NEW LINE. Answer the second
*? with /, press ENTER/NEW LINE.

42E9 00010 ORG 42E9H
00020 RESET BASIC POINTERS PAST M/C ROUTINE.
42E9 219944 00030 INIT LD HL, FINISH+1
42EC AF 00040 XOR A
42ED 77 00050 LD (HL) ,A
42EE 23 000460 INC HL
42EF 77 00070 LD (HL),A
42F0 22A440 00080 LD (40A4H) , HL
42F3 23 00090 INC HL
42F4 77 00100 LD (HL) , A
42F5 23 00110 INC HL
42F6 22F240 00120 LD (40F9H) , HL
42F9 22FR40 00130 LD (40FBH) , HL
42FC 22FD40O 00140 LD (40FDH) ,HL
00150 3 SET JUMP ADRESSES FOR °LSET” AND °*RSET’ COMMANDS.
42FF 211744 00160 LD HL,RSET
4302 229B41 00170 LD (419BH) ,HL
4305 21F943 00180 LD HL,LSET
4308 229841 00190 LD (4198H) , HL
430B 211443 00200 LD HL, TITLE
430E CDA728 00210 CALL 28A7H
4311 C3CCOo6 00220 JP 6CCH
4314 4D 00230 TITLE DEFM *MOVIE:— A BLOCK GRAPHICS MOVE ROUTINE USING
COMMANDS LSET(A1,A2,A3) AND RSET(A1,A2,A3). ’
4387 20 00240 DEFM * COPYRIGHT 20/4/81 MICHAEL WH
ITE 192 LAWLEY CRES. SOUTH HOBRART TAS. 7000."?
0008 002350 BUFF DEFS 8H
0002 00260 POINT DEFS 2H
43F9 CD3444 00270 LSET CALL EVAL s EVALUATE ARGUMENTS
43FC 013F00 00280 LOOPA LD BC, 3FH
43FF 2AEF43 00290 LD HL, (RUFF)
4402 EDSBEF43 00300 LD DE, (BUFF)
4406 23 00310 INC HL sSET REGISTERS FOR °LDIR”
4407 1A 00320 LD A, (DE) 3;SAVE FIRST FIELD
4408 3I2F543 00330 LD (BUFF+6),A
440R EDRO 00340 LDIR s BLOCK MOVE
440D CD7R44 00350 CALL UPDATE
4410 3IBEA 00360 JR C,L00PA
4412 2AF743 00370 LD HL, (POINT) s RETURN PROGRAM POINTER
4415 23 00380 INC HL
4416 C9 003920 RET sRETURN TO BASIC.
4417 CD3444 00400 RSET CALL EVAL s EVALUATE ARGUMENTS
441A O013FO00 00410 LOOPR LD RBRC, 3FH
441D 2AEF43 00420 LD HL, (BUFF)
4420 09 00430 ADD HL,RBC
4421 ES 00440 PUSH HL
4422 D1 00430 POP DE
4423 2B 004460 DEC HL sSET REGISTERS FOR ’LDDR’
4424 1A 00470 LD A, (DE)
4425 3I2F543 00480 LD (BUFF+6),A
4428 EDR8 00490 LDDR s BLOCK MOVE
442A CD7B44 00500 CALL UPDATE
442D 3I8ER 00510 JR C,LO0PR

442F 2AF743 00520 LD HL, (POINT) s RETURN PROGRAM POINTER.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 25

442 23 005320 INC HL
443%F C9 00540 RET

00550 ; EVAL EVALUATE ARGUMENTS OF COMMAND.
444 CD4D44 00560 EVAL CALL GET
44=7 Z2Z2EF43 00570 LD (BUFF) ,HL
447 2AF74Z 00580 LD HL, (POINT)
443D CD4D44 00590 cALL GET
4440 22F147% 004600 LD (BUFF+2) ,HL
4447 2AF7432 00610 LD HL, (POINT)
4444 CD4D44 00620 CALL GET
4449 Z22FZ43 004630 LD (BRUFF+4) ., HL
444C C9 00640 RET

004650 ; GET RETURN INTEGER VALUE OF ARGUMENT. RANGE O — 15
444D 2= 00660 GET INC HL sMOVE HL TO FUNC. ARG.
444F TE 00670 LD A, (HL)
444F FEZC 00680 CP ZCH s TEST IF VARIABLE OR CONST.
4451 0035 00690 IR NC, VAR
445% CD65S0OE 00700 CALL OE6SH sRETURN INTEGER IN *ACC?
4456 1803 00710 JR NEXT1
4458 CD4025 00720 VAR cAaLL 2540H sRET. VALUE OF VAR. IN ~ACC?
445R 22F743Z 00730 NEXT1 LD (POINT) ,HL
445E CD7FO0A 00740 CALL OA7FH sCONVERT TO INTEGER

00750 ;3 TEST FOR RANGE ERRORS. IF ERROR RESET TO RANGE LIMIT.
4461 7D 00760 LD A.L
4462 FEOO 00770 CFP @)
44464 F002Z2 00780 JR NC, ZNEX1
4466 ZEOO 00720 LD L.0Q
44468 FEOF 00800 7ZNEX1 CP OFH
446A F8BOZ2 00810 JR C.ZNEX2
4446C ZEOF 00820 LD L.OFH
f4446E 2600 00830 ZNEXZ LD H, O
4470 29 00840 ADD HL,.HL
4471 29 00850 ADD HL ,HL
4472 29 008460 ADD HL,HL
4473 29 00870 ADD HL . HL
4474 29 00880 ADD HL,.HL
4475 29 00870 ADD HL . HL
4476 11003C 00700 LD DE, ZCO0OH
4479 19 00210 ADD HL . DE s GET SCREEN ADRESS
447/ C9 00920 RET
447R FAFZ43 00970 UPDATE LD A, (RUFF+4) s WRAFP AROUND VALUE
447E FEOO 00940 CP (o)
4480 2004 009250 JR NZ,SKIP s SKIF IF NOT 0O?
4482 ZAFS4= 00260 LD A, (BUFF+46) s WRAF GRAPHICS AROUND
4485 12 00970 LD (DE) . A
44846 EDSBEF4Z= 00980 SKIP LD DE, (RUFF)
448A 214000 009920 LD HL ., 40H
448D 19 01000 ADD HL, DE
448E 22EF43 01010 LD (BUFF) ,HL
4491 EDSRF14Z 01020 LD DE, (RUFF+2)
4495 CD?01C 01030 CALL 1C?0H s TEST END OF LOOF
4498 C9 01040 FINISH RET
42E9 01050 END INIT
00000 TOTAL ERRORS

Lo
% BASIC ARRAY SAVER/LOADER L2/4K by K. Shillito *****

This program was written in response to a request way back in MICRO-80 Issue 8. The BASIC listing
is heavily REMarked so little explanation is required here. A machine language routine is POKEd
into memory by the BASIC program. This machine language routine was hand assembled. Its listing
is unusual in that the code in column 2 is shown in decimal rather than the more common Hexa-
decimal. However, this does make the BASIC program easier to follow. You will note that the
DATA in line 1170 corresponds to the object code in the machine language listing.

If the array being operated on is not a string array, the BASIC program- POKEs two JR commands
to skip the "string only" commands. Note also that LD HL,# and LD DE,@ near the beginning have
the zeroes replaced by AD% and BY% when POKEd by BASIC. In order to avoid excessive POKEing,
some LOAD or SAVE column commands needed in only one column but harmless in the other, are sharedj

Although the BASIC code is a 1little convoluted, if you follow the GOSUB's carefully you will
see that all the BASIC code does is the abovementioned POKEing, prompt CASSETTE READY and USR.
The reason the code is written in this knotty way is to make it as compact as possible while
allowing for an orderly pattern of entry addresses.

Note that, since BASIC uses VARPTR, all items must be defined prior to calling (see the REM

statements in the BASIC listing) or else BASIC could relocate them when defining new variables,
with disastrous results.

I IR T ...

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 26
String
MACHINE CODE FOR ARRAY SAVE AND LOAD only
Code Addr. LOAD SAVE Comments
Label Opcode Operands Opcode Operands
ORG 573BH 3 UNUSED IN 'RESERVED' MEM
62,0 16466 START LD A0 5 DRIVE #-1
205,18,2 8 CALL 212H 5 SWITCH ON MOTOR
205,150,2 71 CALL 296H CALL 287H 3 READ/WRITE LEADER
33,0,0 4 LD HL,@ s AD% POKED BY BASIC
17,8,0 7 LD DC,9 5 BY% POKED BY BASIC
27 80 NEXT DEC DE 5 DEC BYTE/STRING COUNTER
203,122 1 BIT 7,D ; ANY MORE BYTES/STRINGS?
32,37 3 JR NZ,0FF 5 STRING ROUTINE FOLLOWS:
70 5 LD B, (HL) 5 STRING LEN IS DJNZ FACTOR
35 6 INC HL ; (HL)=LSB STR ADDR
126 7 LD A, (HL) 5 A = LSB STR ADDR
35 8 INC HL ; (HL) = MSB STR ADDR
229 9 PUSH HL 3 SAVE STRING ADDR
1082 90 LD H, (HL) 3 H =MSB STR ADDR
111 1 LD L,A 3 (HL) = STRING ADDR
175 2 XOR A ;A=0
184 3 cp B 3 CP @, LEN
49,22 4 JR Z,NULL 5 NULL STRING?
58,64,56 6 10 LD A, (3840H) 5 BREAK KEY ADDRESS
254.,4 -9 cp 4 3 BREAK PRESSED?
40,19 501 JR Z,0FF ; STOP IF SO
197 3 PUSH BC 3 SAVE B (STRING BYTE CTR)
1,255,0 4 LD BC,@FFH ; DELAY FACTOR
205,44,2 7 CALL 22CH CALL 60H 3 BLINK/DELAY
205,53,2 10 CALL 235H LD A, (HL) 5 READ BYTE/RETRIEVE BYTE
119 3 LD (HL) ,A CALL 264H 5 SAVE BYTE/WRITE BYTE
193 4 POP BC ; RESTORE B (STRING BYTE CTR)
35 5 INC HL 5 BUMP SAVE/RETRIEVE ADDR
16,234 6 DJNZ 10 3 STRING FINISHED?
225 8 NULL POP HL 3 RESTORE STRING ADDR
35 9 INC HL 3 NEXT STRING ADDR
24,214 20 JR NEXT 3 NEXT BYTE/STRING
205,248,1 2 OFF CALL IF8H 5 SWITCH OFF MOTOR
2m 5 RET 5 BACK TO BASIC
82,64 6 DEFW 573BH 5 USR POINTERS
END START
5 HAND ASSEMBLE FOR BASIC USR
3 ROUTINE, DEC 1980
10 7 xxx XXX
20 xxx BASIC ARRAY SAVE/LOAD ROUTINE (LEVEL 2,4K/16K) Xxx
30 T xxx% XXX

40

50 KEN SHILLITO
60 10 MILTON ST.,
70 *CHATSWOOD 2067
80

0 T xXxXxxXxXxXxXxXXx FUNCTION OF PROGRAM XXXXXXXXXX

100 *THE SUBRROUTINE SAVES AND LOADS FILES CONTAINING THE ENTIRE
110 *CONTENTS OF AN ARRAY TO CASSETTE.

120 ~°

130 xxXxxxxXx%xXxXx RULES FOR USE XXXXXXXXXX

140 *1.AT THE TIME OF CALLING,VARIABLES I%Z AND J% MUST ALREADY
150 * HAVE A VALUE. (THE VALUES ARE IMMATERIAL & WILL CHANGE) .
160 *2.A VARIABRLE RYZ MUST BE GIVEN A VALUE EQUAL TO THE NUMBER

SUBMITTED TO MICRO-80 MAGAZINE JAN 1980
(IN RESPONSE TO A REGUEST BY CHRIS
GRIFFIN IN ISSUE #8)

170 * OF BYTES IN NUMERIC ARRAYS,0R THE NO. OF STRINGS. A

180 > FURTHER VARIABLE ADZ MUST BE SET TO THE VARPTR OF THE
190 * FIRST ELEMENT OF THE ARRAY. (I.E. WITH EACH SUBSCRIPT 0)
200 *3I.WHEN LOADING STRINGS,DUMMY STRINGS OF THE CORRECT LEN
210 7 MUST ALREADY EXIST. (IF THE STRING LENGTH IS NOT CONSTNT
220 > A LIST OF STRING LENGTHS MUST BE SAVED ALSO AS IN THE
230 7 SAMPLE RUN BRELOW).

240 *4.ARRAYS LOADED MUST BE OF THE SAME TYPE AS ARRAYS STORED.
250 *5.THERE ARE NO RESTRICTIONS IN THE CHARACTERS THAT MAY

260 * APPEAR IN STRINGS.

270 *6.ALWAYS SET ADZ IMMEDIATELY BEFORE GOSUBR (RULES 1 & &6 ARE
280 * NEEDED SINCE OTHERWISE BASIC MIGHT MOVE THE ARRAY).

290 *7.ENTRY POINTS:

J00 * TO SAVE A NUMERIC ARRAY GOSUR 1080
310 TO LOAD A NUMERIC ARRAY GOSUR 1090
320 TO SAVE A STRING ARRAY GOSUR 1100

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 27

I30 7 TO LOAD A STRING ARRAY GOSURBR 1110

360 *1.TO USE #-2,CHANGE THE SECOND ITEM IN LINE 1080 TO 1

370 *2.THE FIGURE 255 NEAR THE LHS OF ROW 3 OF LINE 1080 MAY

380 ° BE REDUCED TO INCREASE THE PACKING DENSITY AND SPEED

390 > DEPENDING ON THE QUALITY OF THE TAPE INTERFACE. 235

400 *° GAVE NO ERRORS AT ALL IN A SERIES OF TEST RUNS TOTALLING

410 * 128K BYTES WITH WELL USED MEDIUM QUALITY TAPE.

420 *3.WHEN CASSETTE READY? APPEARS,PRESS ANY KEY EXCEPT BREAK

430 > TO COMMENCE LOADING/SAVING. CHANGE LINE 1120 TO A REM IF

440 > THIS STEP IS NOT REQUIRED

450 *4.1IF THE ASTERISKS STOP BLINKING AT A BLURRING SPEED IN A

460 * LOAD,SOMETHING HAS GONE WRONG. TO INTERRUPT A SAVE OR

470 * LOAD,PRESS BRREAK.

480 *5.THE SUBROUTINE MAY ALSO BE USED TO SAVE A BLOCK OF MEMRY

490 > OR LOAD ONE UNDER PROGRAM CONTROL. BY ASTUTE USE OF

500 * VARPTR AND CHOICE OF LENGTH OF DUMMY STRINGS,ETC. IT IS

510 > ALSO POSSIBLE TO REARRANGE STRINGS ON RELOADING,LOAD OR

520 * SAVE PART ONLY OF AN ARRAY.ETC.

530 *6.T0O CALCULATE BYZ.,MULTIPLY 1 MORE THAN EACH DIMENSION RY

5940 * 1 FOR STRINGS,2FOR INTEGERS,4FOR SINGLE PRECISIONS,

550 * AND 8 FOR DOUBRLE PRECISIONS. E.G.:

560 DIM A$(10) :BYZ=(10+1) %1

570 ° DIM A#(10,35) :BYZ=(10+1) X (5+1) 8

580 ’7.THE MACHINE CODE IS POKED INTO THE USR PORTION OF MEMORY

590 * AT 4047H-408FH. HENCE,NO MEMORY RESERVATION IS NEEDED.

600 *8.THE SUBROUTINE USES DATA. WHEN LOADING,IT DOES NOT READ

610 > THE LAST 6 ITEMS. THE ROUTINE BEGINS WITH A RESTORE.

620 *9.1T IS GOOD PRACTISE TO USE A DUMMY ITEM OF KNOWN VALUE

630 > AS THE LAST ARRAY ELEMENT FOR CHECKING; A HASH TOTAL CAN

640 * ALSO BE USED. THE FILES CREATED DO NOT USE FILE NAMES OR

650 > CHECK DIGITS,AND ALL DATA IS STORED IN 1 LARGE BLOCK.

660 7?7

670 T k%X

680 7 xx%x SAMPLE PROGRAM TO ILLUSTRATE HOW TO SAVE AND LOAD NUM-

690 ’xx%x ERIC % STRING ARRAYS USING THE BASIC ARRAY SAVER/LOADR

700 7 XXX

710 *

720 *%%%x SET UP ARRAY TO BE SAVED XXX

730 CLEAR2000:DEFSTR Y—-Z:DEFINT A—-X:DIM Y(20),7Z(20),1I(20),J(20)

740 J=0

750 FOR I=0 TO 20:LET Z(I)=STRING$(RND(11)-1,CHR%$(64+RND(26)))+

" "INEXT

760 °

770 7 %%% PRINT PRELIMINARY MESSAGE XXX

780 CLS:PRINT"Xxx%x BASIC SAVER/LOADER DEMONSTRATION PROGRAM XXx"

790 PRINT:PRINT"I WILL PRINT CASSETTE READY TWICE, SINCE I ";

800 PRINT"FIRST SAVE THE STRINGLENGTHS, THEN THE STRING ARRAY";

810 PRINT". THERE IS NO NEED TO LEAVE BLANK SPACE ";

820 PRINT"BETWEEN THE FILES — JUST PRESS ANY KEY WHEN CASSETT";

830 PRINT"E READYAFPPEARS":PRINT

840 ~*

850 *xxXx NOW,WE SAVE THE ARRAYS XXX

860 FOR I=0 TO 20:PRINT Z(I)3;:LET IC(I)=LENC(Z(I)):NEXT:PRINT

870 BRYZ=42:ADZ=VARPTR(I (0)) : GOSUR1080: PRINT?640, STRING® (30," ")

880 BY%=21:AD%=VARPTR(Z (0)) :GOSUB1100: PRINT?640,STRING$ (30," ")

870

00 * x%x%x MESSAGES FOR RELOAD XXX

205 PRINT

710 PRINT"NOW, PLEASE REWIND THE CASSETTE READY FOR RELOADING";

920 PRINT". IF THE":PRINT"ASTERISKS STOP BLINKING AT A BLURRI";

230 PRINT"NG RATE, SOMETHING IS AMISS, WHENCE HIT BREAK % PRE";

240 PRINT"SS GOTO 200 FOR ANOTHER TRY

950

P60 *xxx NOW,WE RELOAD THE ARRAY XXX

?70 BY%=42:AD%Z=VARPTR(J (0)) : GOSUR1090: PRINT2640, STRING$ (30, " ")

975 FOR I=0 TO 20:Y(I)=STRING$(J(I),"#"):NEXT:>DUMMY FILL Y

980 BY7=21:AD%Z=VARPTR(Y (0)) :GOSUR1110: PRINT?640, STRING$(30," ")

990 *

1000 *x%% CHECK THAT EVERYTHING IS OK & REPORT xXxxx

1005 PRINT®2768,;

1010 FOR I=0 TO 20:IF Y(I)=Z(I) PRINT Y(I);:NEXT ELSEPRINT:PRINT
"READ ERROR":PRINT:GOTO?10

1020 PRINT:PRINT:PRINT"%X%Xx SAVED & RELOADED ARRAYS MATCH":END

1030
1040 ~ k%% XXX
1050 *x%x%x BASIC ARRAY SAVER/LOADER; BY KEN SHILLITO XXX

1060 7 XXX XXX

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 28

1070 °

1080 GOSUR1140:GOSUR1160:GOSUR1150:GOTO1120

1090 GOSUR1140:GOSUR1160:GOTO1120

1100 GOSUR1140:GOSUR1150:G0TO1120

1110 GOSUR1140

1120 IF INKEY$=""PRINT2440,"CASSETTE READY?":GOTO 1120

1130 I%=USR(0):RETURN

1140 POKE16553,255: RESTORE: FORIZ=164646T0 16527:READ J%:POKE I1%,J
%:NEXT: I%=VARPTR(AD%) : POKE 16475S,PEEK (I%):POKE 16476,PEEK(I%+1):1
%=VARPTR (BYZ) : POKE 16478,PEEK (I%):POKE 16479,PEEK (I%+1) :RETURN
1150 POKE16472,135:FORI%Z=16508T016513:READ J%:POKE I%,J%:NEXT:RE
TURN

1160 POKE16485,24:POKE16486,9:POKE 16516,24: POKE 16517, 2: RETURN
1170 DATA &2,0,205,18,2,205,150,2,3%,0,0,17,0,0,27,203,122,32,37
.70,35,126,35,229,102,111,175, 184, 40,22,58, 64,56,254,4,40,19,197,
1,255,0,205,44,2,205,53,2,119, 193, 35, 16, 234, 225, 35,24, 214, 205, 248
,1,201,82,64,956,0,126,205,100,2

xx* LOWER CASE DRIVER FOR THE E.S.F. by K. Shillito ***

The MICRO-80 lower case mod requires a software driver to make it work. The usual version that
MICRO-80 supplies is well suited for cassette and disk users, but is incompatible with the ESF
for the following reasons:

1. Its re-location method zaps the ESF floating bytes.

2. The idea of storing machine code on the VDU prior to re-location doesn't work for the
ESF, since it is liable to poke DONE into it.

I have written the program listed below. If you are an ESF user, adopt the following procedure:

(a) Initialize the ESF.

(b) Type 1in the program, or (yuk!) CLOAD it if you are a cassette subscriber. The code
will of course be in lower case if you type it, but you can EDIT it if you wish.

(c) @SAVE your program on a 5' wafer.

Whenever you want Tlower case, you need only GLOAD and RUN the program. You can also add NEW
(not GNEW!) at the end as the last statement, if you want it to delete itself once it has done
its thing. The program prints instructions. If you will usually want a blinking cursor, then
incorporate POKE 16410,255 anywhere in the program, to save typing it. Note that ESF operations
switch off the blinking.

You will note that this driver, because it makes use of the ESF "firmware", is very compact
- it only takes 78 bytes (or, in a sense, none, since it uses memory unavailable to BASIC).
The similarly optioned cassette version takes 170 bytes. Any program that will RUN without
OM Error in BASIC will RUN with this, but that is not so with the cassette version.

But, there is a but! If you have a program that uses DOS 1link addresses (if you don't know
what they are, you don't, so don't worry), or which generates L3 Error, then you must re-locate
the program at high memory, e.g. by specifying 32699 for MEMORY SIZE, and let I1=32699 in line
50.

10 DATA 42,32,64,218,154,4,58,34,64,183,40,1,119,121,254,32,218,

6,5,254,128,210,166,4,195,125,4

20 DATA 229,33,26,64,126,43,166,40,12,53,32,9,54,128,42,32,64,12

6,238,127,119,205,92,55,79,33,24,64,254,32,32,5,58,128,56,174,119

»126,225,183,121,200,254,65,216,254,91,200,238,32,201

30 DATA 3F,0,0,34,30,64,33,0,0,34,22,64,201

40 DEFINT I-J

S50 I=16722 : ’CHANGE THIS FIGURE TO RELOCATE THE DRIVER

60 FOR J=I TO I+77:READ K:POKE J,K:NEXT

70 FOR J=16455 TO J+12:READ K:POKE J,K:NEXT

80 POKE 16457,1/256:POKE 16456, I-256%PEEK (16457) : POKE 16463, (142

7) /256:POKE 16462, I+27-256%PEEK (16463) : POKE 16409,1

20 POKE 16526,71:POKE 16527,64: I=USR (0)

100 CLS:PRINT "Lower Case Driver (E.S.F. Version! is now Operati

ve":PRINT:PRINT "c/— Ken Shillito, 10 Milton 5t., Chatswood 2067,
July, 1981"

110 PRINT "For blinking cursor, POKE 16410,255. To stop blink, p

oke O":PRINT "Press <SHIFT>0O to lock/unlock shift, and then backs

pace":PRINT "To relocate, note the REM in line SO0"

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 29

*%%x%% SOUND EFFECTS REVISITED (OR $TRING$ AND THINGS) by Ronald J. Sully *¥****
Requires 16K or more of memory and is Disk Basic compatible.

SOUND EFFECTS REVISITED is a utility program written in Level II Basic (Disk compatible) specifi-
cally to allow you, the user, to create your own data tables, and/or discover data tables already
resident in ROM, for sound effects which can then be incorporated in your own Basic programs,
simply and efficiently.

The complete program as listed occupies 6113 bytes of RAM. The actual utility (lines 19-199)
require only 927 bytes of RAM plus 60 bytes of reserved RAM for the M/L routine. The M/L routine
is relocatable and the program sets its own MEMORY SIZE to 60 bytes below current top of memory
then POKEs the M/L routine into that memory area. For example: if you have 16K of memory the
MEMORY SIZE will be set to 327@7 automatically by the program then the M/L routine will be POKEd
into memory Tlocations 32707 to 32754. With 48K of memory the memory locations reserved will
be from 65475 to 65522 (-61 to -14). The start address of the M/L routine is then POKEd into
memory locations 16526 and 16527 for Level II users or DEFined by the DEFUSR statement if you
are using Disk Basic. There's no need to make any amendments to the program; it knows what
sort of a system you are using.

The M/L routine is called by the X=USR statement and the sounds created depend on the value
inside the brackets of the X=USR(n) statement. That value in the brackets is used by the M/L
routine as a pointer. It points to a memory area in ROM or RAM. If the statement is X=USR(66)
then the M/L routine will use the values in memory location 66 and 67 for the note and the value
in 68 (#) as an end byte. If the statement is X=USR(SA(n)) then SA(n) points to the start address
of string SS$(n) and the M/L routine uses the ASCII value of the characters in SS$(n) as data
values for the notes.

Lines 19 to 199 of the program comprise the actual utility and include the data for the M/L
routine and the logic to determine MEMORY SIZE and the address in RAM of the strings used and
must be included in your own program for sound effects. Lines 23¢ upward contain all the logic
for you to:

(a) simply and quickly create your own sound effects (stored in strings),

(b) search ROM and RAM for useful sound routines,

(c) play the sounds before deciding they are suitable for your program, and

(d) simply to let you fool around with sound to your heart's content.
To get a better understanding of the program, let's RUN it. (There's no need to set MEMORY
SIZE). If you are keying it in, take note that the strings in lines 80 to 170 can be any length
up to 60 characters and must contain an even number of bytes and don't put the quotation mark
" at the end. The "a", "c", "d" etc. in lines 490 to 550 are all lower case (shifted) characters.

Make sure you CSAVE before RUNning and think again about spending a mere $36 extra for the cassette
edition.

When you are satisfied that the program is either keyed in or CLOADed correctly, connect an
amplifier, turn it on and let's get underway. RUN.

The first thing you see on the VDU (besides the MEMORY SIZE message) is a list of 4 options
and a live prompt waiting for your selection:

OPTION 1. BUILD OR EDIT $TRING

This option allows you to select your own values for both the Duration and Frequency. (See
SOUND EFFECTS, MICRO-87 Issue 8, July 1980, page 36 - by yours truly). These values will be
stored in 1 of 10 strings in lines 8f to 179 for future use. There are some special function
keys designed to make assembly of the strings quicker and easier. These keys are all shifted
except for the up and down arrows.

SHIFTED KEY FUNCTION MEANING

A ABORT Cancel changes, restore string to previous values
and return cursor to byte 1. ‘'Similar to 'A' in Level
I1 Edit mode).

C CoPY Copy the value of the previous 1like byte. If the
cursor 1is pointing to a DURation byte then that byte
will take on a value the same as the previous Duration

byte. Can only be used if byte number 1is greater
than 2.
D DECREMENT Decrement the value of the previous like byte by the

INC/DEC value selected earlier and store that value
in the current byte.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 30
SHIFTED KEY FUNCTION MEANING
E END & EXIT End all editing, save the changes, check the validity

of all entries and return to options. (Similar to
'E' in Level II Edit mode).

INCREMENT Like DECREMENT but value is incremented.
p PROPORTIONAL Subtract the value of the previous unlike byte from
256 and store it in the current byte.
R RANDOM Select a random number between 1 and 255 and store
it in the current byte.
S SAME Take the value of the previous unlike byte and store
it in the current byte.
DOWN ARROW/ Move cursor to next byte. Will continue until key
ESCP is released.
UP ARROW Move cursor to previous byte. Will continue until
CNTRL key is released.
ENTER/NEW LINE Move cursor to next byte. (Has other function explained
later).

Practice makes perfect so let's select option 1 and give it a go. The first thing we must decide
is on which of the 10 strings (§-9) we want to work. Seeing it's our first run through, we
will select string 9 (the longest). Press the '9' key and you will be asked for the INCREMENT/
DECREMENT value. You can select any value here but it would be pointless to select large numbers.
For demonstration purposes, enter the value 2. (If you want @ you can simply press ENTER/NEW
LINE). Having done that we see at the top of the VDU a reminder of the special function keys,
the number of the string we are working on and the value we selected for the INCREMENT/DECREMENT.
The 6 columns on the screen relate to the byte number (from 1 up to 6@) and the value of that
byte. (The value can be from 1 to 255 excluding 34). The columns are headed DUR (duration)
and FREQ (frequency). Each pair of bytes (1&2, 384, 5& etc.) represent 1 note. The current
value of all the bytes should be 42 which is the ASCII code for the asterisk "*". In other
words, SS$(9) = "kkxkxkkx (60 of them).

You couldn't help but notice that the cursor, (a funny looking arrow), is pointing to the first
byte. Let's try some of our special function keys. Firstly the arrows; press /ESCP and watch
the cursor advance. Hold the key down and you will see it advance pass 6@ to start at 1 again.
Try the /CNTRL similarly. Use these keys to move the cursor to the particular byte you want
to edit. Press the ENTER/NEW LINE key. It simply advances the cursor 1 byte. Move the cursor
back to 1 and we'll use some of the other special function keys. Remember to hold the SHIFT
key down for the alpha special function keys. Press SHIFT R; byte number 1 has taken on a value
between 1 and 255 selected at random. (I got 171). Do that several times and you will notice
that the cursor will automatically advance to the next byte. If you have finished playing with
the R key we will have a go at the A key. Press SHIFT A; Bingo! We are back where we started
from. We Jjust aborted and cancelled all our editing so all the bytes now have the value of
42 again. Now type your name. That's right; just type ROBERT ALFRED BLOGGS (if that is your
name). Just type normally all unshifted. How about that? Each byte took on the ASCII value
of the keys you pressed. It works for all characters with the ASCII codes 32 to 47 and from
58 to 9. Press SHIFT A again.

Now comes the important part, so pay attention! Press "§" twice, then "1". The value in byte
1 should read "PP1" and the cursor is pointing to byte 2. Press "@" then press "1". Now press
ENTER/NEW LINE. The value in byte 2 should read "§1" and the cursor is pointing to byte 3.
Now press "1" then ENTER/NEW LINE. The value in byte 3 should read "1", and each of the bytes
1, 2 and 3 contain the value of 1. The important thing to remember is the byte will take on
the value keyed in and the cursor will advance to the next byte whenever:

(a) three digits are keyed in, or
(b) When the ENTER/NEW LINE key is pressed after 1 or 2 digits.
Press SHIFT A to abort.

Mgke byte 1 equal to 5 and byte 2 equal to 2, 0OK? Good, because we are going to create our
first sequence of notes. The cursor should now be pointing to byte 3. Hold the SHIFT key down
and press "C". Byte 3 is now the same as byte 1 because we Copied it. The cursor is now pointing
to byte 4. While still holding down the SHIFT key, press "I". Byte 4 is now equal to 4 because
we Incremented it by our INC/DEC value of 2. Continue in this manner, SHIFT C,I,C,I,C,I etc.
until all the odd numbered bytes (DURation) contain 5 and all the even numbered bytes (FREQuency)
are 2 greater than the previous frequency byte. That is to say, we have selected a relative

r\:E.ﬂ:]le of 5 for the duration of all our notes and the frequency of the notes will gradually get
igher.

Now we will try another special function key. Press SHIFT 'E'. (End & Exit). Well! We ended
alright but we didn't exit. We've been presented with a REDO message at the bottom of the screen
and the cursor is pointing to byte number 34 which contains the value of 34. (Coincidemnce).

5767

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 31

The reason is that I have written the program so the value of 34 is invalid for any of the bytes.
ASCII 34 is the quotation mark " . It would not matter when playing the notes but would produce
an error message if you CSAVEd, CLOADed then RUN. So, to be on the safe side, we will preclude
the value of 34 from any of our byte values. Type "33" ENTER/NEW LINE, or "@§33",or SHIFT1(!)
- all are equal to 33. Now press SHIFT 'E' again. Whalla! (An old Arabic exclamation statement).
We are back to the options. We have just completed creating our first sound string and the
lesson on OPTION 1.

OPTION 2. PLAY $TRING NOTES

Select Option 2. Now press '9' and hold the key down. How about that? Shades of Buck Rogers!
While we are here, we may as well press all the number keys (@-9) and hear what the others sound
Tike.

The centre of the screen shows the statement you need to use if you want that sound in your
BASIC program - "X" = USR (SA(9)) " - that is, of course, if you have appended your program
to lines 10-199 of this program and you have an amplifier connected. So far so good. Now press
'R' (unshifted) to get back to the options because there is no more to say about option 2.

Select Option 1 and choose a string to edit. Perhaps number 8. We are now going to use the
SHIFT 'P' and SHIFT 'S' keys. Put 49 into byte 1. Hold down the SHIFT key and press 'P'.
Byte 2 has now taken the value of 256-4Q = 216. Keep the SHIFT key down and press 'S'. Continue
pressing P,S,P,S ... until all the DUR bytes alternate from 49 to 216 and the FREQ bytes alternate
from 216 to 4@. (Byte 54 = 216). SHIFT 'E' will assemble the string and present you with the
options again. Option 2 will allow you to play the string you just created.

We have now used all the special function keys available with Option 1 except SHIFT 'D'. Try
it for yourself. It works the same as SHIFT 'I' except, of course, the value is Decremented
by the INC/DEC value. -

One more sound string before we get into the other options. Select Option 1. Select a string
(say number 7). Enter 1 for the INC/DEC. Make byte 1 equal to 4 and byte 2 equal to 11. Press
SHIFT C,I,C,I ... etc. until all DUR Bytes = 4 and FREQ bytes start at 11 and the value is incre-
mented until byte 48 = 34. SHIFT 'E' will get you a REDO message at byte 48. Fix it!

We have now covered Options 1 and 2. Rather briefly, so I suggest you now take time out and
have a go at creating your own sound strings.

OPTION 3. RAMBLINGS THROUGH ROM/RAM.

Option 1 allowed us to put selected values in memory to store as data for the M/L routine to
act on. Those values are stored in strings as part of the BASIC listing. Every table of data
used by the M/L routine must have a @ as its last value to indicate the end of data. When we
keyed in the program we purposely left out the end quotation mark from the strings in the utility,
and simply pressed ENTER/NEW LINE after keying in an even number of characters. The ENTER/NEW
LINE key caused a @ to be entered as the last byte. A1l of the 10 strings end with a @ created
by this method. If you were able to PEEK at all of ROM (and you can) you will see what appears
to be a lot of meaningless numbers, with some of those numbers being @. Option 3 allows us
to take advantage of the values in ROM and use them as data for our M/L routine. Look at the
data in 1line 180 of this listing - there we see a series of numbers including a # or two and
those numbers are POKEd into high memory (starting at whatever was set for MEMORY SIZE) by line
69. Select Option 3 and we'll see what we can do with those numbers. Wouldn't you know it?
More options! We will jump the gun here and select Option 2. You should now see the prompt
"START ADDRESS OF ROUTINE ?" on the screen. Type in whatever was set for MEMORY SIZE then press
ENTER/NEW LINE. We are then presented with the message "X" = USR (*****)" and more special
keys, (unshifted). Press S. The sound isn't the greatest but what we did was to get the M/L
routine to read part of itself as data. If it can do that, what about all those numbers and
f's in ROM? Press 'V' then enter '@' -- X = USR (@), then press 'S'. Not the best - but let's
keep going. Press 'V' again then enter '4' --- 'X = USR (4)', Not bad! We must be able to
use that sound for something. Try entering the following numbers; 7, 66, 73, 191, 1999, 1191,
1213, 1383, 4238, 5015, 563p ---- but why should I tell you all the good numbers? Press 'R'
to return to the options then select 1. We are now going to let the program search through
memory for some possible sound routines. Enter @ for the start address and (say) 1909 for the
end address. How MANY NOTES? THis option allows you to enter 1, 2, 3 or any other reasonable
value. We'll try 1 for starters. We now see on the screen 'X = USR (4)' with yet more special
keys. Press 'S' and that is the sound you will get if you have 'X = USR (4)' in your program.
Press 'C'. Now we have 'X = USR(7)'. We've already tried that so continue pressing 'C' & 'S’
alternately until you are convinced that you have always had those sound routines in ROM but
with no way of using them (until now).

Go back to the options by pressing 'R' and try the routine again, only this time enter 2, 5,
8, 15 or whatever number pleases you in response to 'HOW MANY NOTES?'. You will discover that
some of the sounds are quite frightful. And don't be surprised if you don't get any sound at
all. The program searches through ROM from the START ADDRESS until a @ is found, it then deducts
2 for one note, (4 for two notes, 6 for three, etc.) from the memory address of the @ byte
and uses that address for the USR function. For one note we have 1 byte for duration, 1 byte

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 32

for frequency and @ end byte. So much for Option 3 and all it's sub-options.

Although this program is designed primarily to help you create your own sound effects for your
BASIC programs, it is also a fun program. Play with the program with your friends and see who
can create the best (or worst) sound effects. Or try your hand at writing tunes. If you create
really good sound effects then MICRO-80 might like to publish them for others to use. You might
like to drive your spouse (parents/quardian/children/friends) insane while you try this one:

Select Option 3 - RAMBLINGS THROUGH ROM, then Option 2 - PLAY TUNES FROM MEMORY. Enter the
number 14464 then press 'S'. Big deal! You can't hear a thing. While holding down the 'S'
key press the SHIFT key. So what? - Now comes the gimmick. Keep the 'S' key and SHIFT Key
depressed (with one hand) and use the other hand to press any other key (or combination of keys).
Weird isn't it? Try it without the SHIFT key - nothing, not a peep! You may like to do some
homework and find out all about memory location 14464.

The 60 byte maximum on the string length was only imposed because of the limits of the VDU screen.
There are a couple of methods you can use if you want longer strings. One method is presented
here: Make both strings 7 & 8 equal to 6@ bytes then amend the program to read " 160 SS$(9)
= SS$(7) + SS$(8) + CHR$(@) " then whenever you use X = USR (SA(9)) in your program your sound

effects will consist of 120 notes, and of course, you can still use X = USR(SA(7)) and
X = USR(SA(8)) as separate sound effects. After you have created strings 7 & 8 you will have
to RUN the program again to re-initialize string 9 (SS$(9)). And, of course, you will have

to CLEAR more string space because SS$(9) will be stored in high memory. Those of you with
more than 16K of memory will have to adjust the value of SA(9) by subtracting 65536.

Some final words: Don't edit the strings using Level II Edit mode - use Option 1. Don't be
surprised by the strange listing you may get after you have created your sounds. There is no
need to set MEMORY SIZE, the program does it for you.

Oh! By the way, the program offers a special bonus for the more experienced programmer - use
it to assemble your Super Graphics.

Good Luck!

P.S. This program was written before the March issue of MICR0-80 was released. It does not
conform with the requests made in the Editorial on page 2, but the program is totally compatible
with 16K or more TRS-80 Level II, the System '80 and Disk Basic. The only requirement from
the user is to CLOAD & RUN. For those of you who wish to follow the other methods, the M/L
routine is completely relocatable without any modifications - put it wherever you like.

10 MS=256%PEEK (16562) +PEEK (16561) —-60)

20 M1=INT(MS/256) : M2=MS—-256%xM1:POKE16562,M1: POKE16561, M2

30 CLS:PRINT2522, "MEMORY SIZE HAS BREEN SET AT":;MS

40 CLEARSO: ML=PEEK (16562) X256+PEEK (16561) +2

S50 M1=INT(ML/256) :M2=ML-M1%256: IFML>32767THENML=ML-65536

60 FORL=MLTOML+47:READB: POKEL ,B:NEXT: IFPEEK (16326)=201THENPOKE16
526,M2: POKE16527,M1:ELSECMD" T" : DEFUSRO=ML : POKE14308, 1

70 IFML<{OTHENML=ML+65536

80 S5S5%(0)="RONALD

20 SS$(1)="JAMES SULLY

100 SS$(2)="
110 SS$(3) =" # & %L & > () x + , — .
120 SS$(4)=" ? 9 ABRCDEFGHTIJKLHM

130 §§¢(3)="! ¢+ ! 1 1 L P
140 SS4%(6)=" FD FD FD FD FD FD FD FD FD FD FD FD FD FD
130 SS%(7)=" SDFGHASDFGHASDFGHASDFGHASDFGHASDFGHASDFGHASDF GH

160 SS%(8)=""1#$%L&" () X=—:99+; ?>. <, ABRCDEFGHIJKL MNOPEGRSTUVWXYZ[\1"~_
ta

170 SSE (D) =" R KRR R R R KRR H R KRR R R R R R R R R R R R R KRR R AR R KRR KKK
Xk kkkkkxk

180 FORL=0TO?:K=VARPTR(SS% (L)) : SA (L) =PEEK (K+2) x256+PEEK (K+1) : NEX
T

190 DATAZ20S5,127,10,229,221,225,221,78,0,121,183,200,221,70,1,62,
5,211,255,16,254,221,70,1,62,6,211,255,16,254,13%,32,235,221,35,22
1,35,1,255,255,33,48,0,9,56,253,24,214

200 *

WHEN DONE WITH COMPILING YOUR SOUND STRINGS ETC, DELETE THIS

LINE TO THE LAST LINE. THEN USE A MONITER (E.G. BMON) TO MERGE
YOUR PROGRAM WITH LINES 10-190 OF THIS PROGRAM.

210 °

AMEND YOUR PROGRAM TO INCLUDE X=USR(nnnn) OR X=USR(SA(n))
WHEREVER YOU WANT THAT PARTICULAR SOUND.

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 33

SOUND EFFECTS REVISITED
COPYRIGHT (C) APRIL 1981
RONALD J. SULLY

1 PACKHAM PLACE

CANBERRA ACT 2615

(062) 582917

230 IFML<32767THENTM=32767ELSEIFML<42151THENTM=492151ELSETM=65535
240 DIMBV(60),PA(60) :P=256: FORL=1TO60STEP20: FORM=LTOL+19STEP2:FO
RN=MTOM+1:PA(N)=P:P=P+10:NEXTN: P=P+44
250 NEXTM:P=P—618:NEXTL:U1$="##":U2¢="4###" : AR$=CHR$ (93) +" <"
260 X=USR(2000):CLS
270 PRINT"

SOUND EFFECTS REVISITED

(OR $TRING% % THING$%)
280 X=USR(4):PRINT"
OPTIONS:

290 PRINT"
1. BUILD OR EDIT $TRING
2. PLAY $TRING NOTES
3. RAMBLINGS THROUGH ROM/RAM
4. END

300 PRINT" SELECT 1, 2, 3 OR 4:"

310 X=USR(4) : PRINT2867, CHR% (140) ; : S=VAL (INKEY%)

320 IFS<10RS>4THENFORT=1TO100:NEXT:PRINT2867," ";:FORT=1TO100:NE
XT:G0TO3I10ELSECLS: ONSGOTO330, 620, 690,950

330 X=USR(270) :PRINT" BRUILD $TRING OPTION:

<VALUES TO BE KEPT IN RANGE 1-235> - VALUE 34 INVALID"

340 PRINT"WHICH $TRING: <0 — 93>":I$=INKEY%

350 X=USR(66): I$=INKEY$: IFI$=""THENISOELSES=VAL (I%) : PRINT®152,5:
LE=LEN(SS5%$(S))

360 IFLE>60CLS:PRINT"ERROR —— §SS%("3S53") IS GREATER THAN &6
O CHARACTERS; IT IS";LE;"CHARACTERS LONG: FIX IT!":LIST70-160
370 I=0:INPUT"INCREMENT/DECREMENT <VALUE OR ENTER>";I:X=USR(492)

:CLS
380 PRINT?0," <a>BORT: <c>0PY: <d>ECREMENT: <e>XIT:
<i>NCREMENT: <p>ROPORTIONAL: <r >ANDOM: <s>AME: "

390 PRINT2132, "$TRING NUMBER";S; TAR(45) "INC/DEC =";I

400 PRINTTAR(2) ; "DUR"; TAR(12) ; "FREQ@"; TAR(24) ; "DUR"; TAR (34) ; "FREQ
“: TAB(46) ; "DUR" ; TAR(54) ; "FREQ"

410 FORL=213TO853STEP&4:PRINTIL,CHR% (149) ; : PRINTIL+22, CHR$ (149) ;
:NEXT:FORL=1TOLE: X=USR (466)

420 PRINTOPA(L) ,USINGU1$;L;:PRINT": "5 :NEXT

430 FORL=0TOLE-1:BV(L+1)=PEEK (SA(S)+L) : PRINT:IPA (L+1) +3,USINGU24$;
BV(L+1)3:X=USR(110) :NEXT: I$=INKEY$: M=1

440 BR$="":L=0

450 IFBV(L+1) >0ANDBV(L+1) <256ANDBYV (L+1) < >I4THENPRINT2940, CHR$ (20
2);"SOUND EFFECTS REVISTITE D";CHR$(202);

460 I$=INKEY%$: X=USR (888) : PRINTAPA(M)+7," ";: IFPEEK(14400)=8ANDR
$=""THENM=M—-1: GOTOS70

470 IFPEEK (14400)=15ANDE$=""THENM=M+1:GOTOS570

480 IFI$>CHR$(47)ANDI$<CHRS (58) THENB$=B$+I%$: I$="":PRINTIPA (M) +3,
" v PRINT®PA (M) +3,B%$; : BY (M) =VAL (B$) : IFLEN (B$) =3THENB$="": M=M+1
: 60TOS70

490 IFI4$:CHR% (31)ANDI$<CHR% (91) THENRYV (M) =ASC (I%$) : X=USR (2102) : GOT
D600ELSEIFI$="a" THENX=USR (1381) : G0T0D430

500 IFI$="c"ANDM>2THENX=USR (&6&) : BV (M) =BV (M—2) : GOTO&00

510 IFI$="d"ANDM>2THENX=USR(1215) : BV (M) =BV (M-2) -1 : GOTO&400

520 IFI$="e"THENX=USR(4):FORL=0TOLE-1: IFBV (L+1)<10RBRV (L+1) >2550R
BV (L+1) =34 THEN4SOELSEPOKESA (S) +L, BV (L +1) : NEXT: 6OTO260

530 IFI$="i"ANDM>2THENX=USR (1000) : BV (M) =RV (M—2) +1: GOTO500

S40 IFI$="p"ANDM<>1THENX=USR (270) : BV (M) =256—RBV (M—1) : GOT0600

550 IFI$="r"THENX=USR(955) : BV (M) =RND(255) : GOTOA00ELSEIFI$="5"AND
M< >1 THENX=USR (492) : BV (M) =RV (M—1) : GOTD&600

560 IFI$=CHR% (13) ANDB$=""THENX=USR (46) : M=M+1: GOTOS70ELSEIFI$=CHR
$ (13) ANDE$< >" " THENEV (M) =VAL (B$) : GOT0610

S70 IFM<1THENM=LE

580 IFM>LETHENM=1

590 PRINT®PA (M) +7,AR%; : GOTO450

600 B$=RIGHT$(STR$(BV(M)) ,3)

[SSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 34

610 IFLEN(B%)<3ITHENB$=" "+B%:GOTO610ELSEPRINT2PA(M)+3,B%;:M=M+1:
Bs="":G0TOS70

620 X=USR(1783)

630 PRINT"

THIS ROUTINE ALLOWS YOU TO PLAY ANY ONE OF THE SOUND ROUTINES
BUILT UP VIA OPTION 1.

TO HEAR THE NOTES PRESS THE RELEVANT NUMBER KEY <0 — 93"

640 PRINT2768,"<R> TO RETURN TO THE OPTIONS": I$=INKEY%$

6350 PRINT2591, "USE ";CHR$(94);" X=USR(SA()) ";CHR$(93):;" IN YO
UR PROGRAM";

660 I$=INKEY%$: IFI$=""THENGOLOELSEIFI$="R"THEN260ELSES=VAL (I%)

670 IFPEEK(15359)=0THENGG6OELSEPRINT®607,RIGHT$ (STR$(S) , 1) ;: X=USR
(SA(S)) : 6GOTOL70

680 PRINT2960, "VALUE IN BYTE";L+1;"IS OUTSIDE LIMIT <1-235> OR
= 34 :—— REDO";:M=L+1:60T0450

690 X=USR(1253):CLS

700 PRINTTAR(15) "SOUND EFFECTS REVISITED

OPTIONS:

1. SEARCH MEM FOR SOUND ROUTINES
2. PLAY TUNES FROM MEMORY (THE 80°S NOT YOURS!)
3. RETURN TO MAIN OPTIONS

SELECT 1, 2 OR 3:"
710 PRINT2532.CHR$(140) ; : I$=INKEY$
720 IFI$=""THENX=USR(4):FORT=1TO100:NEXT:PRINT2539," ";:FORT=1TO
100:NEXT:GOTO710
730 I=VAL(I%$):IFI<1i0ORI>3THEN710ELSEONIGOTO740,860,260
740 CLS
750 PRINT"SEARCH MEMORY ROUTINE:

YOU WILL NEED TO INPUT THREE NUMBERS;
START ADDRESS <NOT LESS THAN O3
END ADDRESS <NOT GREATER THAN TOP OF MEMORY3>
NUMBER OF NOTES <KEEP IT REASONABLE>"
760 INPUT"START ADDRESS":S:X=USR(492): IFS<OTHEN730ELSEINPUT"END
ADDRESS" ; E: X=USR (492) : IFE>TMTHEN740
770 INPUT"HOW MANY NOTES";N:X=USR(492): N=N¥2: FORL=STOE:K=L: IFK>3
2767 THENK=K—-65536
780 B=PEEK (K) : M=K—N: IFM< OANDL< 32748 THENS4OEL SEM$=STR$ (M)
790 PRINT®653, "USE ";CHR$(94);" X=USR(";M$;") "3;CHR$(93);" IN Y
OUR PROGRAM. ":
800 IFB=OTHENI$=INKEY$:PRINT®704,"PRESS
<S> TO SOUND THIS NOTE
<C> TO CONTINUE THE SEARCH
<R> TO RETURN TO OPTIONS";ELSES40
810 I$=INKEY$:IFI$=""THENS10ELSEIFI$="C" THENPRINT?704,CHR$ (31);:
GOTOB40ELSEIFI$="R" THEN&F0
820 IFI$<>"S"THENS10
830 IFPEEK (15359) =0THENS810ELSEX=USR (M) : GOTO830
840 NEXT:PRINT2640,CHR$ (31); : PRINT?940, "END OF SEARCH - PRESS A
NY KEY TO RETURN TO OPTIONS";
850 IFINKEY$=""THENS8SOELSE&690
860 CLS
870 PRINT"
THIS ROUTINE ALLOWS YOU TRY SPECIFIC SOUND ROUTINES THAT YOU
FOUND IN MEMORY FROM OPTION 1.
OR SIMPLY ENTER ANY MEMORY LOCATION FROM O TO TOP OF MEMORY
AND TRY YOUR LUCK.
880 PRINT2448,CHR$ (31); : PRINT®448,""; : INPUT"START ADDRESS OF ROU
TINE";E: IFE>TMTHENSS0
890 IFE>32767THENE=E-&5536
900 S$=STR$ (E)+") ":PRINT?448,CHR% (31)
910 PRINT®S90, "USE ";CHR$(94);" X=USR(":;S$;" ";CHR$(93):" IN YOU
R PROGRAM";
920 PRINT®704, "PRESS
<S> TO HEAR THE SOUND
<V> TO INPUT ANOTHER START ADDRESS
<R> TO RETURN TO OPTIONS"
930 P=PEEK (14340) : IFP=BTHENPRINT®704,CHR% (31) ; : X=USR (E) : GOTO920E
LSEIFP=4THEN&90
940 IFP=64THENPRINT®576,CHR$ (31) : GOTO880ELSEF30
950 X=USR(1361) : FORL=0T0O9: PRINT2470, "X=USR(SA (";L; ")) "; : X=USR (SA
(L)) :NEXT:CLS:END

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 35

kkk NEXT MONTH'S ISSUE *%*

Next month's issue will contain at least the following programs plus the usual features and

articles.

** POKER LII/16K ** ** SHIFTLOCK m/1 4K **
Now you can play poker on your '80. This A program for the year of the disabled.
game draws 1life size cards on the screen, This 1is a program that was created to
lets you bet on your hand and, if you win allow a disabled person working with a
it, gives you the option to double up, stylus (or one finger) to enter shifted
i.e. on the turn of a card if you get a key values.

card greater than eight, you win twice
your original winnings.

** THE TOWERS OF HANOI LII/16K ** ** MORSE CODE DECODER LII/4K **
This 1is based on the age-old game of the This month you can learn semaphore signals
same name, which has three pegs and a number and next month you can 1learn what all
of different sized discs, (not floppy ones those dots and dashes stand for. With this
either). The player has to get all the morse coder decoder, you Jjust type in
discs from one peg to another without placing dots and dashes and the computer comes
a large disc on top of a smaller one. back with a letter.
** PUT m/1 4K ** ** SHORTEN 32K/DISK **

In response to vreaders' vrequests to be This program will go through your basic
able to SET non graphics, this program program and remove all unnecessary blanks,
does Jjust that. No muss, no fuss, simply REMark statements and Tlinefeeds. A real
type....PUT(X,Y),"stringname" and its done. life saver for those times when every

byte counts.

: ~ W o —
r Beg= 2 E S
: @ ©O LT s 3
: 0882 =l Q
: ETE o €
: . . . w3l a s I
: : : : c . & k3
: : : : Ea®E o 173
: @ : : : 2T Q =} o
- : : : 299G 5 = o
: s : : : T e @ = . g
P8 é : f Eegs 3 2§
: o : : : a3 o
- .8 L 88§ 3 ¢
) : @ : : L =3 o o S
4 : @ : : ° n kL o . =
£ : . o X pou Jay £ J Q |
= H : : Q =~ 0O - P £
o 8 =25
< b= ~ : : 1 © = > o @ = o .
O © i : : o * £ 2 < 3 > [
- [a] - : : [* S—L£® .] © 2
B : % : « 23%5& g E g 8¢
8<Q . : : - 5232 3 8 < 93
22 : > : E @ Zlge b 2 =5 380
3 e N € 5 : 4 o .58 3 Z £ ox
ox S o : : vy T2 = E 5 &=
Ox O W o : : ~ NEE 7] =] ® =
= £ =] : : O ¥vagdo £ @ o n ©
g 5 B : : 4 T>%3 2 2 856
2 5 2 : : E _Evo 3 5 = 8
QLL_ g’ 8 @ : : (&3 S o © - E < 2
o I X Q : : x o ESE 3 O ¥ TE
< QA O H : : - D15 O o c %) © 2
o : : * s s @ @ 4] Qg
(] k] o : : x 14 c o T g . c @
— Q &) X B M ©w . s) o 2 t o |°
| b = L2 : : & © £ -
a E s o : : oL oa > .] >3
o Q : : O = b [=
2 ¢ c : : v g ge =ik > ST O
< § £ ¢ : : £538E S & £ 52
v £ c : : 2 28 & 4 3¢
£ ©0 o : : B 22 o > E $m
= = = : Eecyg] g £ mg
P @ @© : éa = o O o X a - ®
Q% o o & £ > 5 %5
® 5 3 = £ 5 g2se -2 8 45 g0
g 5 5 5 s 3 €. . B2 g & X2
£S &4 & o 2 << ga‘gg £ & ¢ 8=
S S8E%Z e5 2 £ .%
2 9 Q0 dewm = 7 3] Q@ Q
o @ A+ Do 2 oo &8 +
0L . = = s30Lomg 28 5 2 38
FX Tz = nehat wo UL F T a

ISSUE 22 (SEPTEMBER 1981) MICRO-80 PAGE 36

*%kkkx CASSETTE EDITION INDEX **x**

The cassette edition of MICRO-80 contains all the software listed each month, on cassette.
A1l cassette subscribers need do is CLOAD and RUN the programs. Level II programs are recorded
on side 1 of the cassette. Level I programs are recorded on side 2. Level I programs are not
compatible with the System 80. All programs are recorded twice in succession. Note, System
80 computers have had different tape-counters fitted at different times. The approximate start
positions shown are correct for the very early System 80 without the volume control or Tlevel
meter. They are probably incorrect for later machines. The rates for a cassette subscription
are printed on the inside front cover of each issue of the magazine.

The disk edition contains all those programs which can be executed from disk, including Level
I programs. Level I disk programs are saved in the NEWDOS format. Users require the Level
I/CMD utility supplied with NEWDOS + or NEWDOS 80 version 1.0 to run them.

APPROX. START POSITION

SIDE ONE TYPE I.D. DISK FILESPEC ~ CTR-41 CTR-80 SYSTEM-80
SEMAPHORE LII/4K S SEMAPHOR/BAS 7 5 5
" " n n 37 25 26
THREE BILLY GOATS GRUFF LII/16K G GOATS/BAS 66 45 47
n n L1} n 1 09 74 78
SOLITAIRE LII/16K A SOLITAIR/BAS 150 101 106
" " " " 175 118 124
MOVIE SYSTEM MOVIE ~ MOVIE/CMD 200 135 142
" " " 205 139 146
" EDTASM " MOVIE/EDT 211 143 150
" " " 233 158 166
BASIC ARRAY SAVER LII/4K B ARRAYSAV/BAS 254 172 180
" " " 294 199 210
ESF LOWER CASE DRIVER LII/&K E ESFLCD/BAS 332 225 237
" " " 340 230 242
SIDE TWO
ROVING TARGETS LI/aK - ROVING/LV1 15 10 -
" " - 77 52 -
SOUND EFFECTS REVISITED ~ LII/DISK/16K C SER/BAS 134 9 96
" " " 183 124 130
DEMONSTRATION OF
"ORCHESTRA 80" MUSIC AUDIO 240 160 168

: > = 7] ;? : : ®
. © g z 8 1
: o = D D = 3 : :
: x2 m g = 3 P
1 ® Q 8% ®
: » : 2y O = : : =}
: : : o oA : : 2
: : : c @ 9 . . o
: : (L | o 3 : : 1]
: : > g 0= - @®
: : ~ ;8‘:‘; g N 2 3 =
: : m c® ®3 13 ® =
: : DE o) 833 20 © g 9
: : m O m C =0 © 3 2)
; : o = ®lg 82 85 = X 0
: : w30 I 5 Sv o S O&
; ; S 3O I | 838 2e & ©wCco
: : 2 8 m S |l= &5 8% & I 3.
; : g ab S|z g2 °8 8 5 T2
: 8 dJl3 2o = A} S To
S : a = ol&8 T T 3 > -
e : = 2 [~ =4 scg;
B3 : > g 2 |o = o © ® A
S ‘ s Ux @ o 3 3 3_40—1
8 ! 8 o]] P mmxo
@ : c =23 2 Q ° 2 5 2N
: z27 © & o 3 >p
: c D [
m 3 O o O > a0
Y T 3 Y v Q &0
5 mg_ ®Q O S WpEO
b = g o o BPE
. z 8
2 = g3 8
; o S F
: F3 g 5
- :
2
(o]
m

A SPECIAL OFFER!

SUBSCRIBERS OF

FOR THE FIRST TIME IN AUSTRALIA!
GENUINE TANDY TRS—-80 MICRO-COMPUTERS,

HARDWARE AND SOFTWARE AT

GREAT DISCOUNT PRICES!!!

HOW TO ORDER - >é_
1. SELECT ITEMS FROM 1980 TANDY CATALOGUE to CONQUEST ELECTRONICS Pty. Lt;.
2. DEDUCT 10% FROM ADVERTISED PRICES 212 Katoomba St. KATOOMBA 2780

3. POST US YOUR ORDER STATING DESCRIPTION [fease suely =
CAT. No AND A CHEQUE OR MONEY ORDER.

ADV. PRICE

WE WILL -

1. ATTEND TO YOUR ORDER WITHIN 7 DAYS °

SUB TOTAL

2. SUPPLY GOODS SELECTED FREIGHT FREE ! LEss 1
3. SEND ADVERTISING REGULARLY T0 KEEP FIND CHEQUE FOR TOTAL
YOU INFORMED OF CURRENT SPECIALS ! SEND FREIGHT FREE TO

* subject to availability NAME ..
ADDRESScoiviiiice e vttt

TANDV .. P/ COdE oo,
ELECTRONICS '

DEALER

i
CONOUEST ELECTRONICS

212 KATOOMBA ST KATOOMBA N.S.W. 2780 PHONE (047) 82 2491

LEVELIIROM
REFERENCE MANUAL

Paay
Published by MICRO-80 PRODUCTS

Written by Eddy Paay, the LEVEL || ROM REFERENCE MANUAL is the most
complete explanation of the Level || BASIC interpreter ever published.

Part 1 lists all the useful and usable ROM routines, describes their functions
explains how to use them in your own language programs and notes the
effect of each on the various Z 80 registers.

Part 1 also details the contents of system RAM and shows you how to

BASIC routines as they pass through system RAM. With this knowledge, you can
add your own commands to BASIC, for instance, or BASIC programs in
high memory—the only restriction your own imagination!

Part 2 gives detailed explanations of the processes used for arithmetical
calculations, logical operations, data movements, etc. It also describes the various
formats used for BASIC, SYSTEM and EDITOR/ASSEMBLER tapes. Each section
1S by sample programs which show you how you can use the ROM
routines to speed up your machine language programs and reduce the ainount of
code you need to write.

The LEVEL || ROM REFERENCE MANUAL intended to be used by
language programmers. |t assumes a basic understanding of the Z 80 instruction
set and some experience of. Assembly Language programming. But BASIC
programmers too benefit from It. They gain-a much better

into the of the should help them to faster, more
concise BASIC programs.

	_0513080910_001.pdf
	_0513080917_001.pdf
	_0513080927_001.pdf
	_0513080932_001.pdf
	_0513080942_001.pdf
	_0513080947_001.pdf
	_0513080957_001.pdf
	_0513081002_001.pdf
	_0513081011_001.pdf
	_0513081014_001.pdf
	_0513081026_001.pdf
	_0513081031_001.pdf
	_0513081041_001.pdf
	_0513081046_001.pdf
	_0513081056_001.pdf
	_0513081102_001.pdf
	_0513081111_001.pdf
	_0513081116_001.pdf
	_0513081128_001.pdf
	_0513081131_001.pdf
	_0513081140_001.pdf
	_0513081146_001.pdf
	_0513081155_001.pdf
	_0513081200_001.pdf
	_0513081208_001.pdf
	_0513081216_001.pdf
	_0513081224_001.pdf
	_0513081230_001.pdf
	_0513081239_001.pdf
	_0513081248_001.pdf
	_0513081257_001.pdf
	_0513081301_001.pdf
	_0513081309_001.pdf
	_0513081315_001.pdf
	_0513081323_001.pdf
	_0513081329_001.pdf
	_0513081336_001.pdf
	_0513081343_001.pdf
	_0513081353_001.pdf
	_0513081357_001.pdf
	_0513081407_001.pdf
	_0513081414_001.pdf

