Tlny "
Pascal i ‘

Radlo Shack s Tmy Pascal is a cassette based svstem for creatmg, edmng, B

_ compnlmg and executing Pascal programs. Tiny Pascal is a subset of the
slandard Pascal Ianguage. : :

, Thls manual summarizes Tiny Pascal and explams how to use lt on the Model I
: Le\elll 'IRS 80.

Contents

1/ Overview of the System
: 2/TheMomtor......‘......................v
3/ The Editor uviit. i e eiee s
B '4/TheComp:ler...........................
- 5§/ Starting Instructions.................... 1

- 6/ Using the 32K Tiny Pascal............... |

~ 7/ErrorCodes0..oiiiiin .. 14

.~ - 8/ Useful Calls and Addresses:... 17

' 9/ The Rules to BLOCKADE............}}... 18
A/Memory Maps.........ovviiiinnnii,. 19

B/ Sample Programsi.... 20

C / Syntax Diagrams...................{... 23"

Indexoovniiiiinditt il 27
vCustomerlnformatnon..............’...'...28

i

wcwu-w’

~ CUSTOM MANUFACTURED IN THE USA BY RADIO SHACK gA DIVISION OF TANDY CORPORATION

1/ Overview of the System

Tiny Pascal is a complete, self-contained operating system for creating, compiling,
running, saving and loading Pascal programs for the TRS-80. Once you have loaded
- Tiny Pascal, you can use all the **subsystems"”:

Monitor: Provides run-time support, checks for errors, and provides the
necessary utilities to save and load programs to and from cassette tape.

Compiler: Compiles your PASCAL source program into P-code, ready to be
executed. The compiler also checks for syntax errors.

Editor: Lets you create or modify Tiny Pascal source programs.

All three sub-systems are loaded simultaneously, and are always present in RAM
unless you choose to overwrite portions to free memory space.

b

The minimal system requirements are: LEVEL I1, 16 K RAM. You will need at
least 32K to examine the Compiler source. (See Chapter 6.)

Overview of this Manual

Chapters 2 through 4 of this manual discuss in detail the three sub-systems, what
they do, and how to use them. Chapter 5 deals with the specific aspects. limitations
and enhancements to Tiny Pascal. Then follows a chapter on Getting Started to help
you get through the first time you bring Tiny Pascal up. Finally, you will find the
error codes, syntax diagrams, listings of sample programs, and other useful
information.

2/ The Monitor

All operations make at least some use of the Monitor, so we will begin our
description of the Tiny Pascal system with it. The Monitor provides run-time
support to the entire system, as well as providing you with a means of
saving/loading your source programs and P-code (compiled) programs via cassette
tape. From the Monitor you also give the command to compile a program. or to run
that program once it has been compiled. You also invoke the Editor from the
Monitor.

Monitor Commands @ v/

E Edit old source file or create a new one.
C Compile source program into P-code, ready to be executed.
P-code is stored after source in RAM. '
C/-P Compile source, but do NOT generate P-code (useful for checking
ikw for syntax errors)
C/-8 Compile source. and overwrite the source program with P-code

(used when you have very large programs). You will have to
reload or retype the source program if you want to edit it later.
R Run the compiled program.
R/-C Run the compiled program and overwrite the Editor and the
Compiler. You will have to reload the Pascal system if you want to
edit or compile a program later.

LS filename Load source program from cassette.
LPﬁﬁIename Load P-code program from cassette.

WSfilename Save source program to cassette.

WPli/ename Save P-code program to cassette.

Noté’é that you may choose to overwrite sections of the Tiny Pascal system if you
need the space for a large program. However, you must remember that the
overwritten sections are gone and you must re-load the entire system if you are to
use them again.

A file name can be at most six characters long. When loading a program. either in
source or P-code format, the file name must be entered exactly as it was saved on
tape. That is, when loading the Tiny Pascal system or when reloading a program
which you have saved, you must be sure to use the correct and complete name.

If you accidently type in the wrong file name when requesting a load, the Tiny
Pascal system may never return control to the keyboard and you will have to reset
and reload the entire system again. Also, there is no way to find out the names of
files on tape, so you must remember exactly what you called the file when you
recorded it.

3/ The Editor

The Editor provided with your Tiny Pascal package enables you to create and
modify source programs.

The Pascal Editor is line oriented, but, unlike BASIC, does not use line numbers
since they are not used in the Pascal language. The maximum number of lines of
text that you can have is 600, and the maximum line length is 130 characters.

All Editor commands are single characters; some may have numeric arguments
following them, or a character string. In our discussion of the Editor, xxrefers to
integer numbers (1-999), and string refers to a string. Each command ends with a
carriage return ((ENTER) on your TRS-80 keyboard). Invalid commands are flagged
with the message "ILLEGAL .

‘The line pointer always points to the line most recently displayed, modified or
inserted. After a Delete command, the line pointer is moved up one line. When you
first load the Tiny Pascal system, a sample program is loaded in. too. Thus. when
youtype “E™ toenter edit mode, a file is already there. You will see a **>"". This is
the prompt from the editor that lets you know that it is waiting for acommand (not
text). The commands are listed below. N

To erase a source program, use the “D*** command. After a “D*, the editor will
automatically put you into Insert mode and wait for text.

Editor Commands

Note: **’ means entirely or **all the way '’

ENTER A carriage return on an empty line will exit from Insert mode
P Prints the current line 2+ v/, -c»

Pxx Prints xx lines starting from current line

P* Prints entire file

U Moves up one line

Uxx Moves up.xy lines

U Moves up to top or first line of file

=

Editor commands, continued

N Moves line pointer to next line (down)

Noxx Moves line pointer down xx lines

N* Moves line pointer to last line of file

D Deletes current line

Dxx Deletes xx lines starting at current line

D* Deletes entire file. This will automatically put you into Insert

mode and wait for text.

I Enters Insert mode. Begins inserting lines after current line
pointer. A *? is displayed to prompt you. Press (ENTER) at the
beginning of a line to exit from Insert mode.

Rﬁstring Replaces the current line by String
X Extends line. The current line is displayed and the cursor is

positioned to the end of the line, allowing characters to be
appended. Press (ENTER) to save changes and return to

the Editor.
S Displays Status: Number of lines, file location, position of line

pointer. -
Q Quits and returns to the Tiny Pascal Monitor %

e /

The Editor also recognizes two special keys: the back arrow @ for backspace,
and the rightarrow & fortab, which is three spaces. These two keys may be
used at any time forediting acommand orinput file. @ overatab moves the

- cursor three spaces back on the display and erases the tab.

Toillustrate: If you want to enter a program, you would type “E" from the
Monitor, then you would type **I* for Insert. You then can enter text. To stop.
entering text, you press (ENTER) on an empty line. ‘

Ifa‘“MEMORY FULL"’ error occurs while editing or inserting, the source file is too
big. You may be able to pack in the program by eliminating extra spaces and tabs.

You should experiment with the editor for awhile to make sure that you completely
understand its operation.

4/ The Compiler

A compiler is a program that translates the statements of a high-level language into
an equivalent program of machine-readable form. Tiny Pascal translates the
high-level source program into an intermediate file called P-code. The P-code is
then interpreted, using the run-time Monitor for support. The resultis a program
which executes at least four times faster., and up to eight times faster than BASIC!

Tiny Pascal is a subset of standard Pascal. The syntax is essentially identical to the
full language. Syntax diagrams have been included in Appendix C for those who
are just now learning the language.

This manual is not an instructional text on Pascal programming, but rather an
explanation of the limits and special features of Tiny Pascal. However, we will
review some essential points in the next section.

For those who need a more thorough introduction. we recommend the following:
Programming in Pascal; Grogono. Addison-Wesley, 1978

Pascal: User Manual and Report; Jensen and Wirth. Springer-Verlag, 1974

A Primer on Pascal; Conway, Gries, and Zimmerman. Winthrop Publishers. 1976

Pascal, An Introduction to Methodical Programming; W. Findlay and D.A. Watt.
Computer Science Press, 1978 "

Compiler Specifics

Note: See the Index for a complete list of Pascal keywords .

I. Maximum number of procedure or function parameters is 15; maximum
number of procedure nests is seven levels: the symbol table is restricted te 75
entries (200 for big version).

2. *':=""isused for assignment and *‘ = "’ is used for equality. They are not
interchangeable!

3. *'"is used to separate statements, not t

e ——

a COIHPOUHd statement:

d statements. Thus the last *“;” in

BEGIN statement ;
Statement;
IFexp THEN exp ELSE exp;
statement;

END ‘

isnot necessary. (Itis, however, allowed since a Pascal statement can be a null.)
Note also the absence of **;*’ before an ELSE or an END in a CASE statement.

R AT R RS £ RO R TG I T IEIEAD 1 43, L AR e s R e

4.

Expressions may be either arithmetic or logical (Boolean). Thus. the following
are legal:

A:=B>C;

IFA+BTHEN...

Note: The Boolean operator OR has the same precedence as the arithmetic
operators *‘ + '’ and " —*’. AND has the same precedence as ***" " and DIV, etc.
It is important to remember that OR and AND have precedence over ** ="" "' <"’
etc., thus the need for brackets at times as shown below:

IF (A< 10) AND (A>5) THEN...
The statement:

IFA<10AND(A>5) THEN...
Would be parsed (analyzed) as:

IFA<(10AND (A>5)) THEN...

Thus producing an unintended result.

There are some context-sensitive rules and meanings that cannot be inferred from
the syntax diagrams, and may be particular to this implementation:

5.
6.

For the TRS-80, ““(*’and*‘*)’’ are used instead of **[""and **|"".

Identifier names must start with a letter and may be followed with letters or
digits, but only the first four characters are significant. However, reserved
words must be typed in full.

. Identifiers must be declared before used. Identifiers can be declared twice,

but only the last one is used. Formal parameters of a procedure need not (and
should not) be declared again inside the procedure.

. Parameters are passed to procedures or functions by value, i.e. acopy of the

value of the parameter as defined before the call.

. The scope rules for identifiers are the same ones used by any block-structure

language. The scope of a variable is the procedure that contains it. An inner
procedure can use a variable defined in an outer procedure.

10. The only data types Tiny Pascal supports are integers and one-dimensional

ip‘@_igrer arrays. The integers are 16-bitsigned. The arrays start at 0. Arrays are
not checked for subscript-oyt-of-range at runtime.

ey YT SRRV SR 2 N S

11. Built-in functions:

Function Meaning

ADIVB Truncated Integer division: 27 DIV5 = 5
AMODB A - (ADIVB)'B:27MOD5 = 2
ASHLB Binary LﬁﬁShiﬁAbyB:ﬂSHL% = 54

ASHRB binty Right Shift Aby B:27 SHR2 = 13

The built-in array MEM can be used to read to (if it appears in the left side of an
assignment) or from (if it appears in an expression) a specified memory
location, such as:

A:= MEM (24467) +3; (*READFROMMEMORY*)
MEM(T):=0; (*WRITETOMEMORY*)

A second form of the MEM function is MEMW. This enables a two-byte word to
be read to or from memory using the sume convention as for MEM. Note: The
low order byte comes first. in accordance with INTEL convention.

12. Hex constants are prefixed by *%’". e.g.. %2A00

13. Slrings are enclosed by single quotes (7). not double quotes (). Whenastring

appears in an expression or as a CASE label. ithas the value'equal to the ASCH
value tcharacter of the string. Whena string appears in the WRITE
statement, the entire string would be output Forexample:

o

X:="ABCD’
X would equal 65(ASCIT**A™)

[4. The READ and WRITE statements are character-oriented. not line -oriented.
More than one character can be i input or output with a mnglcﬁ;tdtemem :
Deumal L numbers or hex numbers can be read in from the keyboard by a ** #*’

ﬂ(dccmml) T A ' (hex) after the variable in the READ statement. Smnhlwzi«r“lﬁym a
decimal integer can be printed on the output device by following the

expression with the appropriate *# " or ' % for hex.

READ (A,B,C, 1#,J%)

This would READ three characters, a decimal number, and a hex number.

A:=65
WRITE (HELLO?B' A, %', A#, ', A%)

would print:

HELLO? A 65 0041

Note: "B’ represents a blank space. It is used only where necessary for illustration.

I5. Since the READ is character-oriented, it is nccessary to terminate an integer

input by a non-integer character (such as ENTER) or SPACEBAR)). Toinputa
hex number, four digits must be typed.

16. To write on a new line, it is necessary to output the ASCII code for carriage 1%
return/line-feed to the output device. That is, you must manually insert a
carriage return/line feed. For the TRS-80 this can be accomplished by outputting
the carriage return alone. (The TRS-80 software does the rest.) For example:

WRITE (THISISATEST', 13)

Note: 131s an ASCII **carriage return’’.

17. Anexpression in the IF, WHILE, and REPEAT statements is said to fulfill the
condition if the least significant bit is one. This is equivalent to testing whether
the expression is odd. Thus after:

IFXTHENA:=1ELSEA:= 100
A would have the value of one if X is odd, and 100 if X is even.

RIS

18. The relational operators (" ="",""=>""etc.) always produce a value of
zero or one. Thus after:

A:=X=25;
Aequals one if X equals five; otherwise A equals zero.

19. Comments are opened by “(*" and closed by ***)"".

20. Here is a list of built-in functions and procedures:

ABS(exp) Returns the absolute value of exp
CALL(exp) A user-defined machine language subroutine where exp
15 an address to the routine.

Subroutines must conform to the following:

1). Save all registers upon entry.
2). Restore all registers before exiting.
3). Return from the subroutine in the following fashion:

INCDE
INCDE
RET

lnguts ort exp, used hLe this: A = INP(exp)

a Fawp ;f}.&”é*ds @ :z ds"‘” ——
Move ablock ofmemory of nbytes from address a
to address b.

Outpuls ato portx

G i-‘ﬂ ,f’“a."w;" ;9:-;” ELE

Plots graphlcs to screen, using 1he X-y coordmates
lfa 1sodd then plot is “*set’, if @ is even then plot is

“‘reset’’
POINT(x,y) Just like BASIC: Returns one if the point is set, zero if
not set.
SQR(exp) Returns square root of exp.

21. The screen control characters are the Same as TRS-80 BASIC. For example,
use WRITE (28,31) to clear the screen.

5/ Starting Instructions o

LS
" Inthis section, we will go step-by-step from loading the tape the first time, to /

running your first program. Side One of your tape comes with three sample
programs: the first is loaded with the system, the second is HILBER and the third is
BLOCK. Side Two contains the big 32/48K compiler and source to Tiny Pascal,
PAS32K and COMPS| respectively.

Start-Up

1. Turnon your machine. When asked for MEMORY SIZE. respond by pressing
ENTER).

2. Type *‘SYSTEM” (ENTER), toreach system level, You will see ***?7"”

3. Make sure that your Tiny Pascal tape is at the start, and type PASCAL, then

and put the recorder in the Play mode.

4. The tape will begin to load, and the asterisk will blink every four seconds. The
entire load will take about three mmutes T

e

the opening message
TINY PASCAL VXX
where X is the version and Y the release number.

6. Atthis point you have successfully loaded the entire Tiny Pascal operating

system, and can proceed to the next section below. If you did not get this far try
loading the tape again. Try various volume settings.

RN

Creating a Program

I

From the Monitor, type "E". This will place you in the Editor. You will see a set
of statistics on the current file. A sample program is loaded with Tiny Pascal. If
this is your very first try, then skip ahead to step 5, otherwise proceed.

- Todelete the sample program which is always loaded with the system, you

simply use the editor command: "p*". Remember, 'D*’ will delete all lines and
putyou in the Insert mode.

- Atthis point you may entera program.

- Once your program is entered, youmay exit the Insert mode by pressing (ENTER)

atthe start of aline. This puts you back in the Editor command mode.

- Toreturn to the Monitor, to compile, etc., you press (@) for “Quit’’,

Compiling, Running, Saving/Loading a
Program

L.

Normally, to compile a source program, you press (C) (ENTER) from the
Monitor. This creates P-code. If you have any syntax errors, they will show up
here. If you have syntax errors, the error listin Chapter 7 will tell you what they
are. You should then go back and edit the existing source file to correct the
Syntax errors before re-compiling.

Note: Other options for compilation are discussed on the next page and on page 2.

2.

Once you have successfully compiled the program, you may run it from the
Monitor by typing: R ENTER) from the Monitor.

- Tosave the program, or the P-code, you may use the appropriate Monitor

commands. Thatis, **WS filename’’ to save the source file (program text), or
“"WPfilename’ to save the P-code file. Or, at this point, you could start a new
program, or load a previously stored program from tape.

Remember, you must re-compile a program if you make a changeinit!

To load a previously stored program, you would use either the **LS filename"" to
load the source (text) file, or the ““LPfilename’” to load the P-code (object code)
file. If you forget and accidentally try to load an object file as a source file, or

vice versa, errors will result and you may have to reload the Tiny Pascal system.

11

§
i
4

T R T R SR

Special Notes

The key causes a pause in program execution; press any other key to
resume. If you press twice in arow, you will terminate the run, and return
to the Tiny Pascal monitor. -

Once a program has been compiled, only the P-code (that is the compiled program)
need be loaded for execution. In other words, it is not necessary to compile before
each execution if you have saved the P-code on tape.

If an error "1001" occurs during compilation, there is not enough memory. You
should try using "C/-S". Be sure to save the source first!

When a"MEMORY FULL" error occurs while running the program, either cut down
your array size or try using the "R/-C" option. Be sure to save the source first!

We know that you will enjoy using Tiny Pascal, and recommend that you play with
it a while just to get the hang of it and to become familiar with all its features.

12

g

6/ Using the 32K/Tiny Pascal

On Side Two of your tape is an expanded Tiny Pascal compiler. Thatis, it can
handle larger programs. You will need at least 32K RAM to use it. It is exactly the

same as the 16K version, except that it will use all the memory that you have in your
machine.

To use it, simply follow the directions in Chapter 5, for starting Tiny Pascal, except
substitute "PAS32K” for **PASCAL"". The source to the compiler is immediately after
"PAS32K” on Side Two. It is called: "COMPS1”. To load this file simply type: "LS
COMPS1". You can then examine the source to the compiler. You do not need to do
this to run the 32K version,; it is for your interest only. You can use it to study the
design and exact implementation of Tiny Pascal. The source to Tiny Pascal is.
written in Tiny Pascal and should provide hours of enjoyment.

Note: Programs are not interchangeable between the two compilers. That s, a
program created using the 32/48K compiler cannot be used with the normal
compiler, and vice-versa.

7/ Error Codes

ErrorIn Simple Type
Identifier Expected
“Program” Expected
“)" Expected

“:" Expected

lllegal Symbol

Error In Parameter List
"Of"” Expected

“(" Expected

10: Errorin Type

11: (" Expected

12:)" Expected

13: EndExpected

14: ;" Expected

15: Integer Expected
16: "="Expected

17: “Begin” Expected
18: Errorin Declaration Part
19: ErrorIn Field-List
20: “,” Expected

21: " Expected

CoNTROD 2

50: ErrorIn Constant

51 ":="Expected

52: “Then” Expected

53: “Until” Expected

54: “Do” Expected

55: “To"/"Downto” Expected
56: “If’ Expected

57: “File” Expected

58: Errorin Factor

59: Errorin Variable

101: Identifier Declared Twice

102: Low Bound Exceeds High Bound
103: Identifier Is Not Of Appr. Class
104: Identifier Not Declared

105: Sign Not Allowed

106: Number Expected

107: Incompatible Subrange Types
108: File Not Allowed Here

109: Type MustNot Be Real

110: Tagfield Type MustBe Scalar

‘14

R

111

112:
113:
114:;
115:;
116:
117:
118:
119:
120:
121
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151;
152:
153:
154:;
155:
156:
157:
158:

Incompatible With Tagfield Type
Index Type Must Not Be Real

Index Type Must Be Scalar

Base Type Must Not Be Real

Base Type Must Be Scalar

ErrorIn Type Of Standard Procedure Parameter
Unsatisfied Forward Reference

Forward Reference Type Identifier In Variable Declaration
Forward Declared; Repetition Not Allowed
Function Result Type Must Be Scalar

File Value Parameter Not Allowed

Forward Declared Function, Repetition Not Allowed
Missing Result Type In Function Declaration
F-Format For Real Only

Errorin Type Of Standard Function Parameter
Number Of Parameters Does Not Agree With Declaration
Illegal Parameter Substitution

Result Type Of Parameter Function Does Not Agree With Declaration
Type Conflict Of Operands

Expression Is Not Of Set Type

Tests On Equality Allowed Only

Strict Inclusion Not Allowed

File Comparision Not Allowed

llegal Type Of Operand

Type Of Operand Must Be Boolean

SetElement Type Must Be Scalar

Set Element Types Not Compatible

Type Of Variable Is Not Array

Index Type Is Not Compatible With Declaration
Type Of Variable Is Not Record

Type Of Variable Must Be File Or Pointer

lllegal Parameter Substitution

liegal Type Of Loop Control Variable

lllegal Type Of Expression

Type Conflict

Assignment Of Files Not Allowed

Label Type Incompatible With Selecting Expression
Subrange Bounds Must Be Scalar

Index Type Must Not Be Integer

Assignment To Standard Function Is Not Allowed
Assignment To Formal Function Is Not Allowed

No Such Field In This Record

Type Error In Read

Actual Parameter Must Be A Variable

Control Variable Must Be Neither Formal Nor Non-Local
Muttidefined Case Label

Too Many Cases In Case Statement

Missing Corresponding Variant Declaration

15

R 2 sew s AT RS ik

159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171
172:
173:
174:
175:
176:

201:
202:
203:
204

250:
251:
252.
253:
254:
255;
256:
257:
258;
259:

300:
301:
302:
303:
304:

398:
399:
1000:
1001:

Real Or String Tagfields Not Allowed
Previous Declaration Was Not Forward
Again Forward Declared

Parameter Size Must Be Constant
Missing Variant In Declaration
Substitution of standard Proc/Func Not Allowed
Muitidefined Label

Multideclared Label

Undeclared Label

Undefined Label

Error In Base Set

Value Parameter Expected

Standard File Was Redeclared
Undeclared External File

(Not Relevant)

Pascal Procedure Or Function Expected
Missing Input Fite

Missing Output File

Error In Real Constant: Digit Expected

String Constant Must Not Exceed Source Line
Integer Constant Exceeds Range

(Not Relevant)

Too Many Nested Scopes Of Identifiers

Too Many Nested Procedures And/Or Functions
Too Many Forward References Or Procedure Entries
Procedure Too Long

Too Many Long Constants In This Procedure

Too Many Errors In This Source Line

Too Many External References

Too Many Externals

Too Many Local Files

Expression Too Complicated

Division By Zero

No Case Provided For This Value

Index Expression Out Of Bounds

Value To Be Assigned Is Out Of Bounds
Element Expression Out Of Range

Implementation Restriction

Variable Dimension Arrays Not Implemented
"’ Missing

Out Of Memory

8/ Useful Calls and Addresses

HEX
ADDRESS
4180
4182
4184
4186
4188
418A
418C
418E
4190
4192
4194
4196
4198
419A
41A0
41A2
41A4

FUNCTION

Starting address of user source program
Ending address of user source program
Start of P-Code

Endof P-Code

Address of editor

Address of compiler

Startaddress of user source program (again)
Address of runtime stack

Ending address of runtime stack

End of memory address (7FFF for 16K)
Monitor entry point

Address of program currently executing
Complement of contents of 418E

Overflow message flag— default 0
Calladdress: console in (waits for key press)
Call address: console out

Call address: Inkey (input from keyboard, does not wait

forkey press, i.e. returns at once.)

17

P SV,

AR

9/ The Rules to BLOCKADE

The sample program BLOCKADE (called BLOCK) is loaded with the Tiny Pascal
system. The rules are the same as the amusement hall versions. Each player tries to

 box in the other.

The game accepts commands from two players simultaneously. Each player moves
his/her man using the keys illustrated below:

Left-Side Player Right-Side Player
D — w @ — w
lett —(A) (D)— right left —(K) (3) — right
X)— down (L)— down

The speed is user selected between one and ten, with one being the fastest and ten
the slowest. Three to four is about right for beginners.

wihe
!

Appendix A/ Memory Maps

16K Version
4060 Reserved Ram For
Interpreter & Monitor
4100 Entry Points Table
4180 System Control Block
41A0 I/0O Routines
41E0 Interpreter;
Runtime Routines
473A Monitor
498E User Memory For
Source & P-Code
(4.5)
5BCO Runtime Stack For
Editor or Compiler
(1.75)
62A0 Editor P-Code
6ABO Compiler Table
6BDO Compiler P-Code
7FFF Assumed end of memory

32K/48K Version

4060

4100
4180
41A0
41E0

473A
4990

5690
5EA0
5FCO
73F0

Reserved Ram For
Interpreter & Monitor

Entry Points Table
System Control Block
1/0 Routines

Interpreter:;
Runtime Routines

Monitor

Runtime Stack For
Editor or Compiler
(3.25)

Editor P-Code
Compiler Table
Compiler P-Code

User Memory For
Source & P-Code

S A

19

Appendix B/ Sample Programs

¢ SAMFLE TINY PASCAL FROGRAM BY H YUEN =*
VAR =B, Y6, X ¥ K, F o INTEGER:
BEGIN
XA =13Z066;: Ya:.=12a00; F.=11;
REFEAT ¥:=xX@; Y @ =Y8; WRITEC1S, 28,31
FOR K:=1 TOQ 1888 DO BEGIN
MomReY DIV 45 Yo=Yl DIV S
PLOTCX SHRE L% SHRE 2.1 EMD:
XA =xa+x@ LIV F: Ya:.=vYa+ye DI F
F:=F+F DIV &
UNTIL F>76; WRITEC(ZE. 21, “THE SHOMW IS QYER7>
END.

CRRPLOT HILEBERT CURWES OF ORDERS 1 TO W)
COMST M=d; HB=IZZ;
VAR T.He Y 8 YaL UL Y TNTEGER:
FROC MOVE:S
VAR I..J:INTEGER:
FUNC MIMNCA. B

BEEGIN IF HA>E THEM MIN:=B ELZE MIN:=A ENL:

FUNC MARCH B

EEGIN IF A<CE THEN MAX:=B ELSE MAX:=A END:

BEGIM FOR I:=MIHCR. U TO MAKCE WY DO
FOR J:=MINY. Y2 TO MASCY. Yy DO
PLOTCTI, J.o40;
L= V=Y
EMND;

FROC POTYF, T
BEGIMN IF I8 THEN
CRSE TYF OF
1: BEGIN P{4. I-105 #o=x-~H: MOYE:
Fods I-10: Yo=sY-H: MOVE:
Fode I-10: Ki=x=+H: MOVES
S I-10 END;
L3, T4 Yo=vHH: MOVE:
weo=EtHs MOYE:
Yo=N-HE o MOVES

o
]

BEGIM

N
AR

L,

Fe .

3 EEGIN —Ahs Wo=RAH: MOVE:
o =veH MOYE:
=u—H; MOYE

mm

1
"y . W
X
)

m

4: EEGIN
P
Fe

12 Yo=Y-H; MOVE:
iowo=E-Hs MOVE:S
Yoo=YHHs MOVE;
EML

I S B TR LW T R TR

o
s

EM
EML

EEGIN C#MAIMN+)
WRITECL1S, 28, 21, 1%, © HILBERT CURMES Y
Ii=0; H:=H&: X&:=H DIV Z: YO:=x@;
FEFEART I:=I+1; H:=H DIW Z:
mE L =Ra+H DIV 2: YaI=Ya+H DIV &

MisHEHI-10RER YosSvEHLE U=k Vo=t

Fod, I
UHTIL I=N
END.

21

= CrELQCEADE. EY K. M. CHUMG, 2T
VAR I.J. SPEED. BEORT. ELNK : INTEGEFR:
SCORE. MARE. MOVE. CURSOR : ARRAY L)Y OF INTEGER:
FROC PSCORE:
EBEGIM MRITECSCORE G HY;
MEMWCH4@280 =XNEZFFE: CkSET CURSOR:®
WRITEVSCORECL 2#)y END:

FROC BLIMK:
VAR T. k. DELAY: INTEGER:
BEGIM T:=CURSORCI —MOVECT 2;
FOR kK:=1 TO 2@ DO BEGIN
FOR DELAY =1 TO 188 DO
IF MEMBCT »=BLHE THEMN MEMWCT) - =MARE T
ELSE MEMMCT Y =BLMK
ENL:
END:

BEGIN MWRITEC " SFEEDC1I-1800;
RERDCSFEED#): SFEED : =SPEED#10;
MARK @) =%+ %" SHL = FARK LY (=0 "+ " SHL &
BLNE =" <4 -“SHL &;
SCORECEY i =0; SCORECL) :=&;
REFEAT WRITECAS. 22, 210 (#TURN OFF CURS0OR., CLEAR SCREEN#+D
FOR 1:=3 TO 117 0O BEGIM
FLOTCI. 4015 PLOTCI. 945, 4 EMD:
FOR T:=1 TO 45 D0 BEGIN
FLOTCS, To40: PLOTS48, I, 40
FLOTCL4E, T4 FLOTCL47. 1.4 EMD:
CURSOR G CEA+Ed G+ D
CURSORCL) =24B00 -5 —1 5
FOr J:=3 T3 1 00O MEMMOCURSOR T 20 =MARK T ;
MOYVECED (=84 MOVEC(L) - =—54;
T:=1; ABORT: =0 PSCORE:
FEFEAT UNTIL IMEEY<:G: C#HIT KEY TO STHRT#
FEFERT I:.=1-1:
FOR J:=1 TO SFEED DO
CAZE IHEEY OF
THTUMOVECE) == M MOVECE Y =54
DT MOVECG =2 THYCMOVECRY =2
TOTIMOVECL) c=—S3 L MOVECL Y - &
T IMOVECL s =2 TESMOVECLY =T
END;
CURSORCI) : =CURSOR I Y +MOVECT 3
IF MEMWCCURSORST 20 =ELHE THEM MEMWCCURSORCI D) s =MARK (T
ELSE BEGIN SCOREC1-1): =SCORECL~T59+1;
ABORT :=1: BELIME EMD
UNTIL ABORT
UNTIL SCOREC1-I)>>=1@
EHND.

-.-.-H-.-.I.-.-...-l-II-H.--I-II-.IIIIIIHII---I-IIIII-

22

[t}

T T H R ORI 1 X:yuss)

VARIABLH e EXPRBSION[

d/ Syntax Diagrams

\ PROCEDURE]
IDENTIFIER

(BEGON L [ETATEMEN J {END } S

K.@-—[:axmessxom T HEMSTATWWTW \ N
I Ex@_—. TATEM EN (ELSE)-.] STATEMENT
(O
)
%

\"GVH lLE)—-‘(EXPRESSION @ STATEMENT - ¥

\-.@—EP EA}C[STATEMENT @N‘HQ—.[EXPRESSION } S

—Con) i —~(D~[ememon] f{}‘w e e O S Gl
D =

: DOWNTO
WRITE EXP J
RESSION T \ rj

%IIDENTW!ER% L f\ : ¥,
o
o/

o)D) —[pmma () A
S Sy S ey B g S S ey /

23

PROGRAM

—{BLOCK °

BLOCK

A *(CONST

IDENTIFIER Q—’ ONSTANT]

k——‘ IDENTIFIER

=y

- ~()~—{INTEGER)
4
IDENTIFlER lDENTIFlER @—» BLOCK

@ STATEMENT __j‘ENDL
FACTOR
\ I'CONS‘TANT‘[('

N VARIABLE g
A

T JIDENTIFIER [@ L___@.__j—‘@_) [xeression}—

_ e [FAcToRL A

NOT ~| FACTOR f
NS @ "EXPRESSION @ 4
e

@‘ IEXPRESS|ON} v@ /

— ___.[swxpx_e EXPRESSION|-

TR

—*I{SIMPLLE EXPRESSION

SIMPLE EXPRESSION

TERM
TERM
ol
FACTOR
) Y)Y Y)
FACTOR|e— ? ! ! ! E !
VARIABLE
: %} —_ [IDENT!FIER}
CONSTANT
< *vEE_.NTIFlERLI ” -
;——*——-‘[INTEGER }.__“_.___J
L———~———'[STRING{ S
IDENTIFIER

———————s(LETTER)

DIGIT

25

INTEGER

DIGIT

o
=)

¢

HEXINTEGER

‘ HEXADECIMAL
DIGIT

26

U/ C (CHARACTER)- J @

Fm
N

