Preface

THE ADVENTURE SYSTEM contains programs for creating/editing
adventure data bases and running the ‘data bases. “This
package requires a 48K disk system.

ADVLIST (the original adventure creator/editor) was written
by Allan Moluf for his own use. This version was written in
BASIC and worked quite well. Bruce Hansen enhanced ADVLIST
with new commands. Since some ADVLIST commands could take
close to three minutes to complete their tasks, the slower
routines were written in assembly language by Bruce Hansen.
The program was consequently renamed ADVEDIT. s

The ADVENTUR/CMD driver program written by Scott Adams could
not be sold with this package as this would be a copyright
violation. Moreover, this program is not readily accessible
from the newer adventure diskettes which are protected.
However, this driver program is required to run the data
bases created/edited by ADVEDIT. To alleviate this problem,
the ADV/CMD program was written by Bruce Hansen. This
program functions exactly as Scott Adams' Adventure driver
program.

A disk to tape utility program is available from the dealer
for an extra charge. The ADVTAPE/CMD program will read- in a
disk adventure data base and write out a tape version of the
adventure. The tape will contain the adventure driver
written by Bruce Hansen and the data from the disk data base
file. This allows a 16K computer to run adventures created
with ADVEDIT. Since the tape contains the adventure driver
written by Hansen, these tape versions can not ’ be sold
without written permission from the author. For more
information on selling your adventures, see Appendix - B: of
this manual. o

Since ADVEDIT requires the data bases to not be on protected
diskettes, the ADVCOPY/CMD wutility was wriﬁtéﬁ.*fﬁhis
program will read the data base from a Scétt - Adams'
protected diskette and put it on an unprotected one. This

program 1is also available from your dealer for an extra
charge.

A great deal of work has been put into this manual. It is
intended to instruct the user on everything he needs to know
to write and edit adventures. You supply the i@eaSé ’

The saying "if all else fails, read the instructions" should
read "all will fail without reading the instructions! when
applied to the ADVEDIT program. The ADVENTURE" program
written by Scott Adams has over 60 commands and conditions,
and many subtle rules. Don't worry about learning all of
the commands however, just refer to this manual as needed.

Later readings will make finer details easier to pick up.

If you have any suggestions for improvements to ADVEDIT,
pleqse send them to:

Bruce G. Hansen
220 Iris Street
Lansing, MI 48917
(517) 323-2260

Any adventures you write are your property. You may market
them on your own 1if you so desire. However, these
adventures require an adventure driver to run them. The two
available adventure driver programs are copyrighted by their
respective authors and may not be distributed with any
adventures you sell unless written permission 1is given by
the author. The primary dealer of this package, THE
ALTERNATE SOURCE, will market all acceptable adventures and
pay a substantial royalty. See Appendix B for more details.
TAS, and only TAS, has been authorized to use the adventure
driver program written by Bruce Hansen. Perspective authors
should contact THE ALTERNATE SOURCE for more information.
They may be contacted by writing or calling to the following
address/phone number:

THE ALTERNATE SOURCE
1806 Ada Street
Lansing, MI 48910

Introduction

ADVEDIT is an editing program for adventures. With it, most
adventure data bases can be read in and viewed or modified.
Even a Scott Adams' ADVENTURE can be read 1in and solved.
This manual is divided into chapters, each containing a
different section of ADVENTURE and using the ADVEDIT

program. A summary of the chapters and appendices is given
below:

Chapter 1 Overview of ADVEDIT and adventures 1in general.
This chapter describes what ANVEDIT does and
the basics of adventure.

Chapter 2 Description of the ADVENTURE data base
structure. This chapter will describe in
detail what the different conditions and
commands of ADVENTURE are. This is the most
important chapter to know before <trying to
write your own adventures.

Chapter 3 ADVENTURE program instructions. This chapter
describes how adventures must be entered so
they will work properly with Scott Adams'
ADVENTURE program or Bruce Hansen's ADV/CMD
program.

Chapter 4 Operating Instructions. This chapter contains
the instructions for ADVEDIT. A suggested
procedure is also given to assist you in
entering an adventure.

Chapter 5 Sample ADVENTURE. This chapter will describe a
short adventure written to show how to use
most of the commands and conditions.

Chapter 6 ADVENTURE solving techniques. This chapter will
describe how to solve any adventure readable
by the ADVEDIT program.

Appendix A contains an abbreviated ADVEDIT command summary.
This will be highly useful when writing
adventures once you are familiar with the
commands and conditions.

Appendix B tells how to submit your adventures to THE
ALTERNATE SOURCE for marketing purposes.

Chapter 1

Overview of ADVEDIT and Adventures in general

ADVEDIT has only one purpose: To edit and create adventure
data bases. All user created adventures must be run with
either Scott Adams' ADVENTURE program (version 8.2) or Bruce
Hansen's ADV program. ADVENTUR/CMD is the file name for the
main or driver program. Adventure data bases are saved on
disk as ADVENT/Dx, where x is a number from 0-9 or a letter
A-Z. Adventures X and Y are on your master diskette as
ADVENT/DX and ADVENT/DY. Adventure "X" is a '"Miner's
adventure'" and adventure "Y" is a "Burglar's adventure'.

Recently Scott Adams started selling all of his adventures
on 'protected" diskettes. The adventure data bases on these
diskettes are unusable by ADVEDIT. However, a program is
available from your dealer which will transfer the data base
from a protected diskette to an un-protected one. This
program is called "ADVCOPY". The adventure driver program
on these protected diskettes can not be copied to an
unprotected diskette thus raising the need for ADV/CMD.

ADVENTURE 8.2 (by Adams') has recently been superceded by
version 8.3. The newest version 1is included on all
Adventure 0-12 diskettes. ADVEDIT supports all commands of
Adventure 8.2 and 8.3, however, as new versions are
released, new commands may be added. This may make ADVEDIT
and ADV/CMD incompatible with the adventure data bases used
by this new version. ADVEDIT and ADV/CMD will be maintained
s0 they work with new versions of ADVENTURE. At this time,
ADVEDIT and ADV/CMD will work with Scott Adams' Adventures
0-12.

The concept of adventure is very simple. The basic idea 1is
that "certain commands are executed when certain conditions
are met. The only problem, as all adventurers have found,
is getting the conditions to be met. The trick to writing
good adventures (like Scott's) 1is making the conditions
subtle, but logical. The purchase of Scott's adventures is
highly recommended. The techniques in his data bases are
excellent teaching tools along with being fun to play.

Chapter 2

Adventure data base férmat

The data base 1is the actual adventure. By changing this
data base different adventures may be obtained.

The data base consists of the following sections:

1) HEADER information. The header contains the number of
actions, vocabulary entries, rooms, messages, chjects
and some other variables.

2) ACTION entries. The action entries contain the known
player inputs (verb, noun), conditions and commands.
Also contained are automatic actions. The automatic
actions serve mainly for bookkeeping.

3) VOCABULARY entries. These two lists (verbs and nouns)
contain all of the words the player may use 1in this
particular adventure.

4) MESSAGE text. These are the messages used by the
adventure and are controlled by the actions.

5) ROOM description. This is a list of directions tc other
rooms along with a text room description.

6) OBJECT description and starting locations. The
description of the object determines if it is a
treasure, an object which may be carried and dropped or
something else. The starting location tells in which
room the object starts in, if it is being carried at the
start of the adventure or if it starts in the storeroom.

7) ACTION TITLES. These are optional text desceriptions of
the actions. They are ignored by the ADVENTURE driver
program but serve as remarks to the actions when using
the ADVEDIT program.

8) TRAILER information. This contains the version number,
adventure number and a checksum.

HEADER information

The header contains the following information:

1) The number of bytes required to hold all of the text
descriptions such as verbs, nouns, messages, room
descriptions and object descriptions. This number
includes a fixed number of bytes for each verb and
noun. This fixed number is the word length of this

2)

3)

4)

9)

6)

7)

8)

10)

1)

adventure plus one. It includes one more than the
number of characters between quotes in the messages and
room and object descriptions. The number of Dbytes
specified may be larger than necessary, but must not be
smaller or the ADVENTURE driver program will tell how
much too small and quit.

The highest numbered object in this particular
adventure. The objects are numbered starting at zero,
so the number of objects is one plus this number.

The highest numbered action 1in this particular
adventure. Actions are numbered starting at =zero, soO
the number of actions is one plus this number.

The highest numbered vocabulary word in this adventure.
This applies to both verbs and nouns, being the larger
value if they are different. Vocabulary words are
numbered starting at zero, so the total number of verbs
and total number of nouns is one plus this number.

The highest numbered room in this adventure. Rooms are
numbered starting at zero, but room zero is reserved as
a storeroom so the total number of rooms in which the
player may enter is this value.

The maximum number of objects which may be carried.
Under certain conditions the actions can cause more
than this number to be carried. The player will not be
able to pick up anything unless the number of objects
currently being carried is less than this number.

The starting room number for this adventure.

The number of treasures in this adventure. When the
SCORE command is issued this number is divided by the
number of treasures in the treasure room to give the
percent score.

The word length used by this adventure. This number
af fects the nouns and verbs. When the adventure data
base is read in by the ADVENTURE driver program, all
nouns and verbs are either truncated or padded to this
length plus one. This value is the minimum length of
verbs and nouns the player may input.

The time limit. This may be used in some games to
control how long the artificial light will last. TIf
there is no artificial light, it may control the number
of turns in this adventure. If the artificial light is
re-filled, this value is put back in the time linit.
The limit is 327067.

The highest numbered message. Messages are numbered

from zero so this value is the number of messages plus
one.

12) The treasure room number. When treasures are in this
room they are considered collected. When the SCORE
command is issued they are summed and divided into the
number of treasures for the percentage score.

ACTION entries

These are the heart of the adventure. Some are player input
and others are automatic operation actions. The entries are
stored as eight numbers. The first determines when the
action is to be evaluated. The next five are conditions to
be met or parameters for the commands. The last two bytes
specify what commands are to be performed if all of the
conditions were met.

The first number is (150*verb + noun). If the verb is zero,
this is an automatic action and the noun number (1-100) 1is
the probability of this action being evaluated. If the verb
is not zero, it must match the verb in the player's input
and the noun must match the noun in the player's input for
the action to be considered. If the noun 1is =zero, it
matches any possible noun in the player's input.

When player input actions are being evaluated, the action
entries are scanned in numeric order. When the verb and
noun of an action entry match the player's input, the
conditions are evaluated. If all of the conditions were
true, then the commands of this entry are performed. When a
"true" match is made, no further player input actions are
evaluated on this pass. However, if a match is made and all
of the conditions were not true, then the scanning procedure
continues until either a '"true'" match is made or all of the
actions are evaluated. If a match was found but the
conditions were not true, then the message "I can't do that

. . yet!" is displayed. If no match was found, then the
message "I must be stupid but I don't understand what you
mean'" is display.

However, when automatic actions are being evaluated, they
are all scanned regardless of how many are true or false.

If the action is to be considered, the five conditions are
evaluated. If any conditions fail, the commands in the
action are not performed. The conditions are (20 * number +

condition). The condition codes and their meanings are as
follows:
PAR This condition always passes. The number included

with PAR (i.e. PAR 20) may be used by the commands
in this entry. See the list of commands for uses of

HAS

IN/W

AVL

IN

-IN/W

~HAVE

-IN

BIT

-BIT

ANY

-ANY

—-AVL

parameters.

The condition passes if the player is carrying the
numbered object (i.e. HAS 15). It fails if the
object is either in the same room as the player or
in any other room.

The condition passes if the player is in the same
room as the numbered object. It fails if the player
is either holding the object or the object is in any
other room.

The condition passes if the numbered object is
available because the player is either carrying the
object or in the same room as the object. It fails
if the object is in any other room.

The condition passes if the player is 1in the
numbered room (i.e. IN 5). It fails if the player
is in any other room.

The condition passes if the numbered object is held
by the player or if the object is in any other room.
It fails 1if the object is in the same room as the
player.

The condition passes if the player is not carrying
the numbered object. It fails 1if the player is
carrying the object.

The condition passes if the player 1is not in the
numbered room. The condition fails if the player is
in any other room.

The condition passes if the numbered bit flag 1is
set. It fails if the flag 1is cleared. See the
description of bit flags later on for more
information.

The condition passes if the numbered bit flag is
cleared. It fails if the flag 1is set. See the

description of bit flags later on for mnmore
information.

The condition passes if the player is carrying any
objects at all. It fails if the player is not
carrying any objects. The parameter entered (i.e.
ANY 50) has no affect on this coundition.

The condition passes if the player is not carrying
any objects. It fails if the player is carrying any
objects at all.

The condition passes if the .numbered object is in

any other room. It fails if the object is available
either because it is being carried or it is in the
same room as the player.

-RMO The condition passes if the numbered object is not
in room zero. Room zero is reserved as a storeroom.
The condition fails if the object is in room zero.

RMO The condition passes if the numbered object is 1in
room zero. The condition fails if the object is in
any room other than room zero.

CT<= The condition passes if the counter is less than or
equal to the number. It fails if the counter is
greater than the number. See the description of the
counters later on for more information.

cT> The condition passes if the counter is greater than
the number. It fails if the counter is less than or
equal to the number.

ORIG The condition passes if the numbered object is in
the same room it started in. It fails if the object
is in any other room or is being carried.

-0ORIG The condition passes if the numbered object is in
any room other than its starting room or is Dbeing
carried. It fails if the object is in the same room
it started in.

CT= The condition passes if the counter is equal to the
number. It fails if the counter is not equal to the
number.

BIT FLAGS

There are thirty-two bit flags available to the user. They
are numbered 0 to 31. When the adventure is started, they
are all cleared. There are commands to set and clear them
as well as conditions to test their values. Two bit flags
are reserved by ADVENTURE 8.2 and ADV:

15) If this bit flag is set it is dark outside. The room
will be in darkness unless the artificial light
source is available. The artificial light source is
discussed in the OBJECT section of this chapter.
There are two commands (DAY and NIGHT) to clear and
set this bit flag.

16) When this flag is set the artificial light source has
run out. The "FILL" command will clear this flag and
set the time limit to its original value.

COUNTERS

The counters are values which may be incremented,
decremented, assigned values by commands as well as be
tested against a number for numeric conditions. There are
alternate counters which may be switched with the CT counter
in order to operate on other numbers. When the adventure is
started, CT is not assigned any particular value. See
Chapter 5 for more details on how counters may be used in
adventures.

Y

ALTERNATE ROOM REGISTERS

The value of the current room may be saved and restored by
exchanging it with an alternate room register. The saved
room value may be restored by performing another exchange
with the same alternate room register.

The seventh and eighth bytes of the action entry are the
four command codes. The seventh number is (150*command 1 +

command 2) and the eighth number is (150*%command 3 +
command 4).

These four commands may use one or more parameters found in
the condition line of the same action entry. For example,
if the first parameter found in the conditions was a 10 (PAR
10) and the first command which used a parameter in the
commands was a GOTOY command, the player would move to room
10 (GOTO 10).

If a command uses one parameter, its value is represented by
"Par #1" in the following command description. If the
command uses two parameters the first is represented by "Par
#1" and the second by "Par #2." The parameters used by any
command are skipped by later commands if they also use
parameters. For example, 1if +the conditions held three
parameters: PAR 3, PAR 15, PAR 26 in that order, the first
command that used a parameter would use the 3, the second
command would use the 15 and the third would use the 26.
Too many parameters in the conditions has no effect. But
not having as many parameters 1in the conditions as the
number expected by the commands will produce strange
results. For example, specifying no parameters in the
conditions and having a "GETX" command in the commands.

These are the possible command codes in ADVENTURE 8.3:

0 No command or message.

1-51 Display message numbers 1-51.

52

53

54

55

56

57

58
59
60

61

62

63

64

65

GETX

DROPX

GOTOY

X-RMO

NIGHT

DAY

SETZ
X->RMO
CLRZ

DEAD

X->Y

FINI

DSPRM

SCORE

Pick up Par #1 object unless the player is
already carrying the maximum number or limit.
The object may be in the current room or in any
other room.

Drop the Par #1 object in the same room as the
player. The object may be carried or in
another room.

Move the player to the Par #1 room. This
command should be followed by a DSPRM command.
Also, this may need to be followed by a
DAY/NIGHT command depending on the light status
of the room.

This command moves the Par #1 object to room
zero.

This command sets the light/darkness bit flag
(15). The room will be dark if the artificial
light source is not available. This command
should be followed by a DSPRM command.

Clear the light/darkness bit flag (15). This
should also be followed by a DSPRM command.

Set the Par #1 bit flag.

This command is a repeat of command 55.
This clears the Par #1 bit flag.

This clears the light/darkness flag (makes it
light), moves the player to the last room and
tells him he is dead.

Move the Par #1 object to Par #2 room. This
command will automatically display the room if
the Par #1 object either entered or exited the
current room.

Indicate to the player that the game 1is over
and inquire if he wants to play again.

Display the current room. This checks the
light/darkness flag and if the artificial light
source 1is present. If it is light, the room
description, visible objects and obvious exits
are displayed. If it is dark, nothing is
displayed (it is too dark to see) unless the
artificial light source is present.

Tells the player how many treasures are in the

66

67

68

69

70

71

72

73

INV

SETO

CLRO

FILL

CLS

SAVE

EXX,X

CONT

LIGHT TORCH

EXX,X

treasure room and what percentage the total is.
If one hundred percent 1is stored, then the
winning message is displayed and the player is
given the option of playing again.

Tells the player what objects are being
carried.

This sets the zero bit flag. It may be useful
since no parameter from the conditions is
necessary.

Clears the zero bit flag. It may be wuseful
since no parameter from the conditions is
necessary.

Re-fills the artificial light source and clears
the bit flag 16 (indicator of light source
status). This also picks up the artificial
light source. This command should immediately
be followed by a X->RMO command where Par #1 is
the unlighted artificial light source (they are
two different objects).

This command did a clear screen in the BASIC
version of ADVENTURE and does nothing in the
machine language version.

Saves the game to disk or tape depending on
which version is Dbeing used. It writes some
user variables such as the current room,
current locations of all objects, status of all
bit flags, current values of all alternate room
registers and the current values of all
counters.

Exchange the room location of the Par #1 object
with the room location of the Par #2 object. A
DSPRM is automatically performed if either Par
#1 or Par #2 objects were in the current room.

This command sets a flag to allow more than
four commands to Dbe performed. When all
commands in this action entry have Dbeen
performed, the conditions of all subsequent
action entries with a zero verb and noun (up to
the first non-zero verb and noun) will he
evaluated. The checking procedure continues
regardless if the entry being checked 1is true
or false. For example, consider the following
actions:

HAS 12 PAR 9 PAR 12 PAR O PAR O
MSGS CONT -

AUTO O

EXM,CT CT-1 -

AUTO O

EXX,X

AUTO O

EXM,CT

SHOOT GUN

EXX,X

PAR 1 PAR PAR O PAR O PAR O
CT= 0 PAR
MSG6 -
PAR 1 PAR
HAS 23 IN/W 2 PAR 2 PAR 4 PAR O
MSG8 - -

PAR 12 PAR O PAR O

PAR O PAR O PAR O

1O1© 1 O

If the conditions of the action with the verb-noun of "LIGHT

74

75

76

77

78

79

80

81

AGETX

BYX->X

DSPRM
Cr-1

DSPCT

CT<-N

EXRMO

EXM,CT

TORCH" are found to be true, then its commands
are executed. One of the commands is a '"CONT".
This means that all "AUTO O" verb-noun actions
following "LIGHT TORCH" will be considered. In
this case there are three of them. All three
are considered even if none of them are true or
false. For example, the third one is
considered even if the second one was true.

Always get Par #1 object even 1if the carry
limit is overflowed.

Put the Par #1 object in the same room as the
Par #2 object. If the Par #2 object 1is Dbeing
carried this will pick up the Par #1 object
also, regardless of the carry 1limit. TIf this
command changes any objects in the current room
a DSPRM command is automatically executed.

This is a copy of command 64.
Subtract one from the counter value.

This displays the value of the counter. No
carriage return is printed after the value.

The sets the counter equal to the Par #1 value.

This exchanges the current room with the room
number held in alternate room register =zero.
This may be used to save a player's current
room for return to it later on. This command
should be followed by a GOTOY command if the
alternate room register zero had not been set.

Exchange the value of the counter and the value
of the Par #1 alternate counter. There are
eight counters numbered 0 to 7. When the
adventure starts these are mnot set to any
particular value so initialization automatic
action entries should set them. Also, the time
limit may be accessed Dby exchanging with
alternate counter eight (8).

82 CT+N Add the Par #1 value to the counter.
83 CT-N Subtract the Par #1 value from the counter.

24 SAYW This displays the noun (second word) input by
the nlayer.

35 SAYWCR This displays the noun (second word) input by
the plaver followed by a carriage return,

86 SAYCR Starts a new line on the display.

87 EXC,CR Exchange the value of the current room with the
Par #1 alternate room register. This may be
used to remember more than one room. There are
six alternate room registers numbered 0 to 5.

38 DELAY This command pauses for about 1 second before
going on to the next command.

39-101 These commands are undefined by version 8.3 of
ADVENTURE but may be used in future ADVENTURE
releases.

102-149 Display messages 52-99.

Note that action commands 89-101 are not used. Scott Adams
may use these in future updates of the adventure driver.
However, they may also be defined by THE ADVENTURE SYSTEM.
If you have any suggestions for added commands, send them to
the author for consideration.

The automatic action entries have a variety of uses. All of
them are considered before a player input. Such things as
falling asleep, checking for day/night or any other tasks
that must be performed without player input are candidates
for automatic action entries. Chapter 5 contains a more
detailed description of automatic actions.

VOCABULARY entries

Fach vocabulary entry consists of a verb string and a noun
string. Synonyms are handled by beginning the word with an
asterisk, which are then treated the same as the first

previous word with out an asterisk. Some of the vocabulary
entries are predefined by ADVENTURE and SHOULD NOT be
changed. These vredefined verbs and nouns avre listed helow:
Verbs

0 AUTO This 1s not entered by the player while playing

the adventure. It signifies the auto action
entries which are all evaluated before a valid
player input.

1 GO This is a special case for the direction nouns
1-6.
10 GET This 1is used to pick up objects if there is no

action entry that applies and the noun matches
the name enclosed in slashes in an object name in
the current room. See the OBJECT section of this
chapter for more information on the object name.

18 DROP This is used to drop objects 1if there is no
action entry that applies and the noun matches
the name enclosed in slashes in an object name
being carried.

Nouns

0 ANY This is not entered by the player while playing
the adventure. It denotes the action entries
which can match any noun (or no noun).

1 NORTH This is reserved for the first room direction
entry with verb 1.

2 SOUTH This is reserved for the second room direction
entry with verb 1.

3 EAST This 1is reserved for the third room direction
entry with verb 1.

4 WEST This is reserved for the fourth room direction
entry with verb 1.

5 Up This 1is reserved for the fifth room direction
entry with verdb 1.

6 DOWN This is reserved for the sixth room direction
entry with verb 1.

ROOM entries

The room entries consist of the number of the adjacent room
in the six reserved directions N, S, E, W, U and D plus a
room description string. If the adjacent room number 1is
zero, there is '"no obvious exit" in that direction. If the
adjacent room number in the N direction is 5, then going
NORTH will put the player in room 5.

If the text description of the room does not begin with an

asterisk, the ADVENTURE program will precede the string with
"You're in a"; otherwise, it will Jjust display the
description minus the asterisk. To get quotes (") within
the text description type a SHIFTed @ in place of the
quotes. A SHIFTed @ sign will look like a regular @ sign
unless an upper/lower case mod has been installed and some
video driver program is being used. The ADVENTURE program

will automatically change these to quotes.

Room zero 1is reserved as a storeroom for objects currently
not in any room. The player can not get to room zero by
using one of the reserved directions. Actions usually do
not permit the player to enter this room.

The last room is reserved for some sort of 1limbo state
should the player die. This is where the player is sent
with a DEAD command. It may or may not contain exits Dback
to the other rooms.

MESSAGE entries

The messages consists of a string of characters for each
message to be displayed by any of the action entries. Entry
0 should always be left as a null string. To get quotes to
appear within a message simply type a SHIFTed @ in place of
the quote. ADVENTURE will change this to a quote.

OBJECT entries

The object entries consist of a text description of the
object along with its starting room number. Room zero is
used for objects not found yet. A minus one (-1) is used
for the starting room when the player is carrying that
object at the beginning of the game.

The object descriptions should begin with an asterisk if
that particular object is a treasure. Also, if the object
is to be picked up and dropped, the word to use for it is
enclosed in slashes at the end of the description. The word
between the slashes must be the same length or smaller than
the word length of the adventure. If the verb is 10 (GET)
or 18 (DROP) and no other action applies, the adventure
program will automatically pick up or drop the object if the
player's inputted noun is the same as the object name. The
name of the object must be a noun in the list of vocabulary
entries for this pick up and drop feature to work. The
object name must also be a primary noun, not a synonym.

An example of a treasure that can be picked up is:

FIRESTONE (cold now)/FIR/

which can be picked up by the word "FIR". Before the
firestone 1is cooled, the treasure was in the storeroom and
the following object was in the room: :

glowing *FIRESTONE*

Because this object does not begin with an asterisk it is
not recognized as a treasure. Also, it can not be picked up
since it has no name between slashes. The action that cools
the firestone exchanges the locations of these two objects.

Object number nine (9) is reserved as the artificial light
source in its lighted state. The ADVENTURE program checks
to see if object 9 is available when a room is in darkness
(NIGHT). Also, the FILL command GETs object 9 when the

light is recharged. Examples of object 9 are a 1lit
flashlight and a 1lit lamp.

ACTION TITLES

The action titles are labels for the action entries. They
aid in commenting the actions and ease in editing the
adventure. The ADVENTURE program discards the titles when
an adventure is read in because they are only used by an
adventure editor program. These descriptions SHOULD NOT
contain quote marks.

TRAILER

The trailer information contains the version number, the
adventure number and a security checksum. If the version
number was 415 it will be displayed as "4.15". The
adventure number is simply the number identifying the
adventure (0-9, A-Z). The security checksum is
(2 * #actions + #objects + version). If the checksum
computed by the ADVENTURE program does not equal the one in
the adventure file the ADVENTURE program will hang up.

Chapter 3

ADVENTURE Instructions

This chapter will give some rules governing the entering of
a user adventure. These are rules pertaining to Scott
Adams' ADVENTURE program and Bruce Hansen's ADV program, not
ADVEDIT. Rules are given in sections such as Action
entries, etc.

Rules for the Action entries are as follows:

1) All of the automatic actions must proceed player input
actions. If the auto-actions are not placed first they
will be ignored.

2) 1If the action entry uses commands which require
parameters, there must be parameters 1in the condition
line. If not, strange messages and objects will appear.

Rules for the vocabulary:

1) The predefined verbs and nouns (NORTH, GET, etc.) must
remain in their preset positions. Failure to do so will
cause difficulty in moving from room to room and/or
carrying objects.

2) This 1is not a rule, but a strong suggestion. When
keying in verbs and nouns with ADVEDIT, wuse only the
word length specified in the header. This will make
unintentional duplicate words easy to find. Duplicate
nouns and verbs can be a big problem. For example,
suppose noun 10 was SHED and noun 11 was SHELF. If the
word length was three, SHED and SHELF would appear to be
the same noun, SHE. This is where the problem occurs.
If an action entry refers to SHELF (i.e. EXAMINE SHELF),
the ADVENTURE driver program starts scanning the list of
nouns for a match. The first occurrence of SHE is in
SHED and since the noun number ADVENTURE is looking for
(11) is not the same as the one it found (10), the
action does not work. By 1limiting the length of
inputted nouns and verbs to the word length, this
problem will never crop up.

3) If a word is to be a synonym, it should be preceded by
an asterisk and placed after the primary noun or verb.
For example, if GO is the verb and RUN, WALK and ENTER
are to Dbe synonyms, the list of verbs would read GO,
*RUN, *WALK and *ENTER.

4) Nouns and verbs must not contain embedded quotes.

Room rules are as follows:

1)

2)

3)

The

1)

2)

No quotes can be used in the room description. Quote
marks are used as delimiters for the room description,
thus using them within a description will cause problems
when trying to read the adventure data base. If quote
marks are desired, a SHIFTed @ sign (a character 60 hex)
should be used in their place. The ADVENTURE program
will change these to quotes (the SHIFTed @ sign will

look like a normal @ sign unless a software video driver
is being used).

The header contains the number of rooms, the last being
used to send the player to after a DEAD command. The
last room should be some sort of limbo state or
something similar.

Fach room has six values associated with it. These are
the room numbers which are entered on a direction
command (i. e. GO NORTH). These values should be legal
room numbers (ADVEDIT won't 1let a bad number be

entered). A zero is used if no exit is possible in that
direction.

rules for Messages are as follows:

No quotes can be embedded in the messages. Quote marks
are used as delimiters for the messages, thus using
guotes within a message will cause problems with a disk
read. To get quote marks within a message, type SHIFTed
@ signs in their place. The ADVENTURE program will
change these to quote marks.

Message O should be null.

Object rules:

1)

2)

The starting room for an object should be a valid room
number. Objects not found yet or not used at the
beginning of the adventure should be in room zero (the
storeroom). Objects the player is carrying at the start
of the adventure should have a starting room of minus
one.

The object description should not contain any embedded
quote marks. Quote marks are used as description
delimiters while stored on disk and embedded quote marks
will mess up the disk file. Use a SHIFTed @ sign in
place of quotes. The ADVENTURE program will change
these to quotes after they are read in.

3) An object name is placed between slashes at the end of
the object description if it 1is to Dbe carried and
dropped. The name should be the same length or less than
the word length of the adventure. The object name must
be a primary noun in the vocabulary list, not a synonym.
If it is a synonym the pick up and drop feature will not
work for that object.

There are a few differences in the ADVENTURE drivers "ADV"
and "ADVENTUR". The biggest difference is the disk
input/output of each.

"ADVENTUR" 1limits the name of the adventure data base being
read in to one character. For example, 1legal adventure
names are:

ADVENT/DA
ADVENT /D7

"ADV" limits the name of the adventure data base to two
characters. For example, legal adventure names are:

ADVENT /DA
ADVENT /D7
ADVENT /DAA
ADVENT/DOA

The other difference is the file structure of a game saved
in progress. These saved games are not compatible with each
other (a game saved by "ADV" <can not be read in by
"ADVENTUR").

The file names written out are also different. The main
part of the name is the same - the player's name input at
the beginning of the adventure, but the file name extensions
are different.

With "ADVENTUR", the extension is "/Sx" where '"x" is the
adventure number being played.

With "ADV", the extension is "/Sxn" where "x" is the first
character of the adventure number (the second one is ignored
if the adventure data base had a two letter name like
ADVENT/DOA) and '"n" is the game version written out. "ADV"
allows up to ten different files to be written from the same

adventure. This allows the progress of an adventure to be
saved out at different points.

Other than these simple differences, the two programs are
nearly identical.

Chapter 4

ADVEDIT Instructions

This chapter contains the instructions for the ADVEDIT
program. Each option will be covered in detail.

Program start up procedure:

Put the ADVEDIT diskette in drive 0 and turn on the
computer. From the DOS command mode type:

XREF

Under no condition should you just enter '"LOAD XREF/CMD".
The program contains a relocating loader which moves it up
to high memory. Just "LOADing" the program will not
relocate it to high memory. Also, never load the "XREF"
program twice without resetting the computer. The program
will still work except the second load will simply set lower
in memory than the first one thus wasting memory.

If any high memory drivers are to be wused, they must be
loaded before the "XREF" program. They must also protect
themselves by setting the high memory pointer (4049H for
Model I, 4411H for Model III) to some value below them.
Failure to do this will cause "XREF" to overwrite them!

Also, under no circumstances should the high memory pointer
be changed once the "XREF" program has been loaded. Failure

to do this will cause problems with the "XREF" and "INSERT"
commands.

After the '"XREF" program has been loaded, go to BASIC and
specify one file. After "XREF" is loaded, it displays the
memory size which should be set from BASIC. The memory size
need not be set (unless TRSDOS 2.1 or NEWDOOS 2.1 1is wused)
if wusing NEWDOS/80, TRSDOS 2.3, LDOS or DOSPLUS since the
XREF machine language program protects itself. If a MEMORY
SIZE other that the one specified by "XREF" is set, it will
cause problems when using the "XREF" and "INSERT" commands.

Next, type in:

RUN "ADVEDIT/BAS"

To modify or just peek (that's cheating!) at an existing
data base, READ it into memory and then use the ADVEDIT
commands to review it. To create a new adventure simply run
ADVEDIT and start entering data via the MODIFY command.

The ADVEDIT commands and corresponding menu keys are listed

below:

READ an adventure data base in.

WRITE an adventure data base out.

LIST the data base.

PRINT (hardcopy) the data base.

MODIFY a data base section.

INSERT blanks into the data base.

XREF: reference every occurrence of a data
base section in the actions.

END the ADVEDIT program.

H HMHMEYrr=EX

Most of these commands have options within them. A
description of each command is given below.

READ command:

This command will read in an adventure data base. Simply
supply the adventure number and the drive number. If the

drive number is not entered, the first occurrence of the
file is used.

The adventure number may be at most two characters from 0-9
and A-Z. Scott Adams' adventures 0-12 use the characters
0-9 and A-C (A for 10, B for 11, C for 12). This translates
into a file name of "ADVENT/Dx" where "x" is the character
0-9 or A-C. If two characters are entered, such as '"00" the
file name would be "ADVENT/DOO". The adventure number
displayed by the adventure driver program (ADVENTUR/CMD or
ADV/CMD) will be from 0-35. Only the first character of the
file name is wused in determining this number. A 0-9 are
displayed as that number, an "A" is displayed as a 10, a "B"
as an 11, etc. The TRAILER of the data base contains the
adventure number. Scott Adams' adventure driver program
requires this value to be a single digit from 0-9.
Therefore, only the least significant digit of the adventure
number is written out (0 as 0, 15 as 5, 23 as 3, etc.)

Examples of good file names are:

Characters Resultingufile name
A ADVENT /DA
OA ADVENT/DOA
ZD ADVENT/DZD

If an error occurs while reading a data base, an appropriate

error message 1is displayed and control returns to the main
menu.

If bad data somehow gets into the data base, a "*BAD

SECURITY*" message 1is displayed. The data base will have
been read in, but the accuracy of the data can not be
guaranteed.

WRITE command:

The WRITE command will store an adventure data base on disk.
The adventure number and drive number are requested. If the
adventure Dbeing written out was previously read in, hitting
<ENTER> for the adventure number and drive number will write
the adventure out with the same specifications.

The adventure number entered must be in the same format as
in the READ command.

Before writing the data base, ADVEDIT verifies that the
HEADER is holding the correct limiting values of the number
of actions, messages, etc. For example, suppose you entered
50 messages but the HEADER said there were only 40. Writing
the data base out without checking the limits would result
in some lost data (messages 41-50). ADVEDIT makes a check
and would write out all 50 messages.

LIST command:

This command is used to list on the CRT any part of the data
base. After 'L" 1is entered from the main menu a LIST
sub-menu is displayed.

The options of the submenu are: Header, Action entries,
Vocabulary, Rooms, Messages and Objects.

The section to be listed is selected by typing in the first
letter of its name. For example, if "A" 1is pressed, the
Action entries will be listed. 1If the "-" key is pressed,
the LIST sub-menu is exited back to the main menu.

After a section of the data base is selected, the lower and
upper limits to be displayed are input. If the ENTER key is
depressed for this inquiry, all of that data base section
will be listed. The listing will automatically pause after
so many lines are displayed. To continue the listing, hit
any key (except BREAK).

While +the section 1is listing, hitting the SPACE BAR will
cause the listing to be exited and the LIST sub-menu to be
reentered. If the 1listing has paused, then pressing the
SPACE BAR will not exit back to the LIST sub-menu.

The number of items in each data base section is kept in the

HEADER. This value is the upper limit used by ADVEDIT when
the ENTER key is depressed on the limit inquiry (lower and
upper bounds). The MODIFY command will allow input past
this value without changing the value. As a result, all
items of a data base section may not be reviewed on a LIST,
PRINT or MODIFY. To fix this, just make sure the HEADER

points to at 1least the highest value of the data base
section in question.

To LIST Action entries 5 through 65, input the following
(user inputs are underlined):

L (Hit the "L" key from the main menu to enter the
LIST sub—-menu)

The computer will display the following:

Which section of the data base do you want to list:

Header, Actions, Vocab, Rooms, Messages or Objects
Type: H, A, V, R, M, O or - ? _

To select a data base section, hit the first letter of that
section. In our example this would be the "A" key:

A (To select the Action entries)
The computer will display:
Lower Limit, Upper limit (ENTER is All) ? _
Now type in the limits (5 and 65):
5,65
The action entries should be listed starting at entry 5.
After six have been listed, hit any key to continue listing.

If the SPACE BAR is pressed while the section is listing,
the LIST sub—menu will be reentered.

PRINT command:

The PRINT command will give a hardcopy listing of any one
section or all of the data base. Hitting the "P" key while
at the main menu will enter the PRINT sub-menu.

The options of the PRINT sub-menu are:

Everything, Header, Actions, Vocab, Messages, Rooms or
Objects.

The PRINT subfmenu gives the option of printing any or all
of the data base. Hitting the SPACE BAR while a section 1is

being printed will return control to the PRINT sub-menu.
The PRINT command, unlike the LIST command, gives no options
for upper and lower bounds of printing. Hitting any of the
PRINT sub-menu options will cause that data base section to
be printed. The section is selected by pressing the first
character of its name.

When the "P" key is pressed from the main menu the computer
will display the following:

Do you want to print Everything in the data base

or just the Header, Actions, Vocab, Messages, Rooms or
Objects

Type: E, H, A, V, R, M, O or -7 _
If the "-" key is pressed, the main menu is reentered.

If any section of the data base has been entered past its
limiting value (the value held in the HEADER) then all of
the data will not be printed. To fix this, make sure the
HEADER points to at least the highest value of the data base
section being PRINTed.

MODIFY command:

The MODIFY command is used to edit an adventure. To enter
the MODIFY sub-menu hit the '"M" key while in the main menu.

The computer will display the following:

Which section do you want to modify:
Header, Actions, Vocab, Rooms, Messages or Objects
Type: H, A, V, R, M, O or = ? _

To modify a section of the data base, simply key in the
first letter of its name. If the option selected 1is
anything other than the HEADER, an inquiry is made for the
lower and upper limits of the data base section to be
modified. Hitting ENTER here will let the user modify all
elements of that section. One note however, the wuser can
MODIFY past the 1limit value held in the HEADER for each data
base section. If ENTER is hit for the lower and upper
bounds inquiry, any elements above the upper limit in the
HEADER will be missed. The fix is to make sure the HEADER
points to at least the last item in each data base section.

When modifying any section of the data base, hitting the
ENTER key as a response will leave the item the same.

When an Action is modified, and all conditions and commands
have been entered, an inquiry is made for "Y,N,-". The "Y"
means the modified action is correct, "N'" means it is not.

If "Y" is pressed, any changes to that action are stored and
the next action entry is displayed. If the '"N" Kkey was
pressed, the action entry will be modified again. If the
"-" key is pressed, the action entry is assumed to be
correct and the MODIFY sub-menu is reentered.

Also, when modifying actions, the conditions are entered
with a comma between the word and the number. For example,
"AVL,50" is a legal input.

Verbs and nouns must be separated by a comma (VERB,NOUN).
Verbs and nouns input into actions must match exactly with
ones found in the vocabulary or an error message will be
printed. For example, if EXAMINE was the entry in the
vocabulary 1list, EXAMINE would have to be the entry in the
action (EXAM would not work).

Suppose an action entry was to have "LIGHT TORCH" as its
verb-noun, the conditions were that object 10 must be being
carried (object 10 is an unlit torch) and the commands would
be to switch the location of the 1lit torch with the unlit
one. The entry of the action would go as follows
(underlined entries are input by the player):

M (from the main menu to enter the MODIFY sub-menu)

Which section do you want to modify:)

Header, Actions, Vocab, Rooms, Messages or Objects
Type: H, A, V, R, M, O or — 7 A

(Select the Actions)

Lower Limit, Upper 1limit (ENTER is All) ? 123,123
(Select Action 123)

Action 123; Verb, Noun ? LIGHT, TORCH <ENTER>
PAR 0 Cond, Value ? HAS,10

PAR 0 Cond, Value ? PAR,10
PAR 0 Cond, Value ? PAR,9

PAR O Cond, Value ? <ENTER>
PAR 0 Cond, Value ? <ENTER>

0 Cmd or Msg # ? EXX,X

0 Cmd or Msg # ? <ENTER>
0 Cmd or Msg # ? <ENTER>
0 Cmd or Msg # ? <ENTER>
Title ? <ENTER>

OK? Type: Y, Nor - ?2 Y

See chapters 2 and 5 for more information on what the
conditions and commands entered here actually do. The
"PAR 0" and '"0'" preceding the inputs are the previous values
of those entries. A '"PAR,0" 1is entered to delete a
condition. A "0" is entered to delete a command.

To enter a room called "CLOAK ROOM" with a north exit to
room number 10 the following would be entered:

M (from the main menu to enter the MODIFY sub-menu)
Which section do you want to modify:
Header, Actions, Vocab, Rooms, Messages or Objects
Type: H, A, V, R, M, O or = ? R
(Select the ROOMs)
Lower Limit, Upper limit (ENTER is All) ? 5,5

(Select room number 5)

Room 5: ON 0 s 0O E ow 00U 0D
Room description:

N,S,E,¥,U,D rooms ? 10,0,0,0,0,0

Description ? Cloak room

The numbers preceding the letters (N, S, E, etc.) are the
previous adjacent room numbers.

INSERT command:

The INSERT command will insert blank lines into certain data
base sections. Hit the "I" key from the main menu to enter
the INSERT sub-menu.

Insertions can be made into actions, verbs and nouns. To
select a section, type in its first letter. Next, indicate
the number of blank lines to be inserted. Lastly, respond
with the item number the Dblank lines are to be inserted
after. Hitting the "-" key returns control to the main
menu.

The number of blank lines to be inserted must be a positive
number. If it is not, an error message 1is displayed and
control returns to the INSERT sub-menu.

A couple of applications of INSERT are given below:

At times, the user would 1like to add a synonym to an
existing verb or noun in the vocabulary list. If there is
not a Dblank line for the synonym after the primary verb or
noun, the vocabulary has to be moved around. This is a real
hassle since the action entries will probably have to be
modified also. For example, if verb number 20 is moved to
verb number 58, then all occurrences of verb 20 in the
actions will have to be changed to verb 58. This is done by
modifying the actions and retyping the verb-noun
combination. An easy way to find all occurrences of a verb

or noun 1is use the XREF command (discussed below) to find
which actions they are used in.

Suppose the word EXAM was in the verb list and the synonym
*HIT was put in its place. Every action entry with the verb
EXAM would now have *HIT in its place. The easy way to add
the synonym would be to insert a blank line and type the
synonym in. The INSERT command could be used to put one
blank line before EXAM (actually the blank line would be
inserted after the verb just before EXAM) so *HIT could be
entered, thus saving a 1lot of modifying. Inserting into
nouns is done the same way.

There are some rules which must be followed however. No
insertions may Dbe made before verb 18 (DROP). Since an
insertion before the DROP verb would move it from its
predefined position, an insertion before it is not allowed.

No insertions are allowed before noun 6. Nouns 1-6 are the
predefined room directions and they <can not have any
synonyms so no insertions may be done in them.

Also, at times a few blank lines may be needed between two
action entries. For example, maybe an entry has to be
lengthened to the point that a CONT command in the action
entry must be added. If another action entry directly
follows the entry to be CONTinued, at least one of them will
have to be moved and retyped. The INSERT command will allow
one or more blank 1lines to be inserted so the CONTinued
action entry may be entered with no retyping.

Another use for the INSERT command on actions is for making
more space for the automatic actions. The automatic action
entries must precede all player input actions. If there Iis
no more room for auto-actions, the INSERT command can make
room by inserting some blank lines before the player input
actions.

An example of INSERTing follows. Suppose you have the
following partial noun list:

23: SHELF
24: *BOOK
25: CASSETTE
26: DISKETTE
27: DOG

If you wanted to add the synonym "*TAPE" to the noun
"CASSETTE" the INSERT command could be used. The procedure
goes as follows (all user input is underlined):

Hit the "I" key from the main menu to enter the INSERT
sub-menu. This message will be displayed:

What section of the data base do you want to insert into:
Actions, Verbs or Nouns

Type: A, V, Nor - ? N
(The "N" was hit to select the nouns)
The computer will respond with:
How many blank lines ? 1
(We need to insert only one blank line)
The computer will inquire:

After what noun # ? 25

After a few seconds the insertion will be completed. After
the task is finished the nouns will be listed as follows:

23: SHELF
24: *BOOK
25: CASSETTE
26

27: DISKETTE
28: DOG

Now the MODIFY command could be used to place the noun
synonym "*TAPE" at noun 26.

As you can see, noun 26 (DISKETTE) was moved to noun 27 (all
nouns following the selected noun are moved down). The
INSERT command changes all affected action entries by this

operation (instead of referring to noun 26, refer to noun
27).

One warning about INSERT. When an insertion 1is made, the
highest item in the data base section selected will be moved
up in the list. The limiting value in the HEADER 1is not
updated however. A check should be made to determine if
this 1is the case.

Most of the code of the INSERT command is contained in the
machine language file "XREF/CMD". 1If this file 1is not
loaded before ADVEDIT is run do not use the INSERT command.

XREF command:

The XREF command returns the number of every action entry a.
noun, verb, room, message, object, bit flag or counter

appears in. To use this command type "X'" from the main
menu.

The XREF sub-menu will be printed on the screen. Hit the
first letter of the section the XREF is to be rum on. Enter
the item number for the XREF (for example, which object
number). ADVEDIT will not allow illegal values to be input.

Output may be routed to the screen or printer by typing an
"S" or "P" when asked.

Finally, the limits of the actions the XREF is to be run on
is entered. For exaniple, you may want to see which actions
from action entry 5 through action entry 134 reference
object 34.

There are a few oddities about the XREF command. An XREF
can not be done on message 0. It may also give strange
results on nouns. XREF can find every occurrence of a noun
number. However, no distinction is made from nouns and auto
action probabilities. Just 1list the actions after the
references are made so a distinction can be made.

When an XREF is run on the verbs, nouns or messages, a match
is displayed by the message "ACTION: n'" where '"n" 1is the
action number that particular item was found in.

When an XREF is run on an object, room, bit flag or counter
one of two messages will be displayed.

The first one is '"CONDITION - ACTION: n". This message is
displayed if the item found was referenced in the conditions
of the action. For example, "BIT 30", "HAS 10" and "IN 3"
are references in the conditions.

The second one is "COMMAND - ACTION: n'". This message is
displayed if the item found was referenced in the commands
of the action. For example, "GOTOY" where the associated
parameter in the conditions was a "PAR 3" or "AGETX" where
"PAR 10" was in the conditions.

When displaying matches, XREF does not pause the output.
Therefore, if there are more than 15 or so matches, the
first ones may be hard to read. In this case, select a
smaller range of actions to be scanned and do the XREF 1in

more than one part. Another solution is to send the output
to the printer.

The following table tells what conditions are searched for
when doing an XREF on the appropriate data base section:

OBJECTS ROOMS BIT FLAGS

HAS IN BIT
IN/W -IN -BIT
AVL -

-IN/W

-HAVE
-AVL
-RMO
RMO
ORIG
-ORIG

The following table tells what commands are checked for when
doing an XREF on the appropriate data base section:

OBJECTS ROOMS BIT FLAGS COUNTERS

GETX GOTOY SETZ EXM, CT
DROPX X->Y CLRZ

X~RMO

X->Y

EXX,X

AGETX

BYX->X

As you can see by the above table, the only command searched
for when doing an XREF on a counter is the "EXM,CT" command.
The reason for searching for only this command even though
others may affect the counter (i.e. CT-1) is that there is

no way of checking if the other commands (such as CT-1) are
affecting that particular counter.

If must be noted that for every "EXM,CT" command for a
particular counter, there will almost certainly be another
"EXM,CT" command to switch it back in either the same action

or in one closely following the first one. This situation
must also be considered.

Suppose you wanted to find which actions referenced object

number 25. The procedure would go as follows (user inputs
are underlined):

From the main menu hit the "X" key to enter the XREF
sub-menu:

What section of the data base do you want an XREF of:
Verbs, Nouns, Rooms, Messages, Objects, Bit flags or
Counters
Type: V, N, R, M, O, B, Cor - ? O
(Select the OBJECT XREF)
The computer will inquire:

Object # ? 25

(Select object 25)

Screen or Printer output: Type S or P ? S
(Direct all output to the screen)

Actions scanned:
" Lower Limit, Upper limit (ENTER is All) ? {ENTER>

(Scan all of the actions)

CONDITION - ACTION: 6
COMMAND - ACTION: 45
CONDITION - ACTION: 123

The output in this example was contrived, but it indicates
that object number 25 1is referenced in the conditions of

actions 6 and 123 and 1is referenced 1in the commands of
action 45.

One warning about the XREF command. Most of the code for
this command is in the machine language file "XREF/CMD". If
this file 1is not loaded before the ADVEDIT program is run,
the XREF command should not be used.

If the ENTER key is pressed for the range of actions
scanned, the wupper 1limit scanned will be the upper limit
held in the HEADER. If the HEADER value is not high enough
to encompass all actions, any actions above the HEADER value
will not be checked.

END command:

Pressing the "E" key from the main menu causes the END
command to be executed. The END command simply returns
control to BASIC.

If the BREAK Kkey is depressed at any time and the ADVEDIT
program is halted, the instruction "GOTO 4" may be entered
to resume operation with all data left intact.

Because of all the string wusage in ADVEDIT, string
compression may occasionally occur. This will result in
pauses up to 30 seconds. In most cases, string compression
will never pop up.

ADVEDIT has been checked out with NEWDOS/80 version 2.0,
TRSDOS 2.2 and 2.3, NEWDOS/21, DOSPLUS, LDOS and NEWDOS/80
version 1.0 with success. The only problem occurred when
using NEWDOS/80. version 1.0. If using this DOS, the zaps
sent out by Apparat must be installed. Also, when entering

message numbers in the action entries, the values must be
two digit numbers. For example, message 5 1is entered as
1!05" or " 5"

ADVEDIT LIMITATIONS

The following limitations are imposed on data entered via
the ADVEDIT program:

1) Maximum number of action entries is 300.

2) Maximum number of vocabulary entries is 150.

3) Maximum number of rooms is 100.

4) Maximum number of messages is 100.

5) Maximum number of objects is 150.

6) Maximum characters in a text description of an object,
room, message or action title is 2535.

These "limitations'" are far in excess in most cases of any
current Scott Adams' Adventure.

The maximum values encountered by any current Scott Adams'
adventure are:

270 Action entries
80 Vocabulary words
30 Rooms
99 Messages

100 Objects

Another limitation of ADVEDIT is that only integer numbers
may be entered. If a number out of the range of +32767 to
-32768 is entered, an error will occur and an error message
will be displayed. 1In fact, if any BASIC error occurs, the
BASIC error number will be displayed and control will return
to the main menu.

Suggested entry for ADVEDIT

The first step in using ADVEDIT is writing the adventure on
paper. It 1is sort of like writing a story. Just the basic
idea of the adventure is needed. For example, in Scott
Adams' Adventure 3 (Mission Impossible), the basic idea is
to disarm a saboteur's time bomb planted in the core of a
nuclear reactor.

After the basic idea is down on paper, some of the finer
details should be considered. For example, in Adventure 3

there are three doors that require some sort of
identification to get through them.

After the finer details are done, start writing down the

rooms, vocabulary and objects on paper. After most of these
are entered, start writing the actions and messages. The
reason for writing the actions and messages last is so you
know what objects and rooms you have to work with and can
add more when needed.

After the adventure is roughly down on paper, start entering
it into the ADVEDIT program. The HEADER should be modified
first. The values input here do not have to be exact, just
approximate.

A big decision has to be made at this time. That is the
word length of the adventure. Scott Adams wuses 3 or 4
letters for the word length on his adventures. The word
length is significant because the length of the object names
(identifier between slashes for objects to be picked and
dropped) must match this value or be shorter.

After the HEADER is entered, the order of section entry does
not matter (except that the actions must be entered after
the vocabulary).

After the adventure is tvped in, double check that no text
descriptions contain quote marks. If they do, change them
to SHIFTed @ signs (ADVEDIT does this in all known cases).

Next, double check that the header values are high enough to
contain all of the data (i.e. the number of actions 1in the
HEADER 1is at least as large as the actual number of
actions).

Lastly, save the adventure out with the WRITE command and
END the program.

Now go to DOS aud run Scott Adams' ADVENTUR program or Bruce
Hansen's ADV program. The adventure number to be entered
must be the same as the one used when writing the adventure
out. Scott Adams' ADVENTURE program only allows one
character to be input (0-9, A-Z). If the adventure data
base was written out with a +two character file name and
Scott's driver is to be used, it must be RENAMEd from DOS to
one with a single character name (for example, ADVENT/DA not
ADVENT /DAA).

Now comes the time consuming part, debugging the adventure.
The way to do this is check every possible thing you can
think of to see if the actions are performing the way you
wanted them to. If they don't, take notes on which ones
aren't working and continue playing your ADVENTURE. After
finishing with this procedure, run the ADVEDIT program again
and fix any errors. This process takes longer than writing
the adventure in most cases. But after much hard work you
should have an gdventure you could be proud of.

Chapter 5

Sample Adventure

This chapter explains, in depth, a short adventure entitled
"MINI-VENTURE." This adventure uses most of the conditions
and commands available in ADVENTURE. Every significant part
of the data base is explained. But first here's a listing
of the data base:

Adventure 35 Version 1.01 7837 bytes under 16K (tape) or
11214

under 32K (disk)

BYTES #OBJ #ACT #VOC #RM CARRY START #TR WLEN TIME #MSG
TR-RM

1008 14 41 22 8 5 1 1 4 999 16
7
ACTIONS
== V N COND 1 COND 2 COND 3 COND 4 COND 5
CMD 1 CMD 2 CMD 3 CMD 4 ACTION TITLE =—--
0: AUTO 100 -BIT 1 PAR 1 0 0 0
MSG1 SETZ - - INTRO
1: AUTO 100 ~-IN 2 PAR1 PAR 4 PAR 1 0
EXM,CT CT<-N EXM,CT - SET MUG CNTR
2: AUTO 100 1IN 2 PAR 1 0 0 0
EXM,CT CT-1 CONT - MUGGED?
3: AUTO 0 CT= 0 0 0 0 0
MSG2 DEAD FINI -
4: AUTO 0 PAR 1 0 0 0 0
EXM,CT - - -
5: AUTO 100 ~IN 2 BIT 15 0 0 0
DAY DSPRM - - IN LIGHT?
6: AUTO 100 1IN 2 -BIT 15 0 0 0
NIGHT DSPRM - - IN DARK?
7: LIGH MATC HAS 13 PAR 9 0 0 0
AGETX DSPRM MSG3 CONT LIGHT MATCH
8: AUTO 0 PAR 9 0 0 0 0
DELAY DELAY X->RMO DSPRM
9: AUTO 0 0 0 0 0 0
MSG4 - - -
10: GET KEY 1IN 1 RMO 12 PAR 12 0 0
MSG5 AGETX - -
11: GET KEY IN/W 12 PAR 12 0 0 0
GETX MSG5 - -
12: DROP KEY HAS 12 PAR 12 0 0 0
DROPX MSG5 - -
13: EXAM KEY AVL 12 0 0 0 0
MSG6 - - -
14: GO DOOR IN 2 PAR 3 0 0 0
GOTOY MSG5 - -
15: UNLO DOOR HAS 12 IN/W 3 0 0 0

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41:

MSG7

EXAM DOOR
MSGS8
EXAM WHEE
MSG12
GO ELEV
GOTOY
GO ELEV
GOTOY
EXAM PANE
MSG13
PUSH 1
CLRZ
PUSH 2
SETZ
GO ROOM
GOTOY
GO ROOM
GOTOY
UNLO DOOR
MSG7
EXAM DOOR
MSG8
EXAM DOOR
MSGS8
EXAM DOOR
MSG8
UNLO DOOR
EXX,X
LOCK DOOR
EXX,X
GO DOOR
GOTOY
SAVE GAME
SAVE
QUIT ANY
FINI
SCOR ANY
SCORE
INVE ANY
INV
EXAM ANY
MSG14
HELP ANY
MSG15
GO CAR
GOTOY
PUSH BUTT
MSG16
TURN ANY
MSG5
AUTO 0

IN/W 3
MSG9
IN 1
IN/W 4
MSG5
IN/W 6
MSG5
IN/W 5
IN 4
MSG5
IN 4
MSG5
IN 4
MSG5
IN 4
MSG5
IN/W 7
IN/W 7
MSG10
IN/W 8
MSG11
IN/W 10
MSG11
HAS 12
MSG5
HAS 12
MSG5
IN/W 10
MSG5

tol1ol1olLol1 01O

IN 2
MSGS

1o 1 01 O

0
RMO 12
PAR 4
PAR 4

0

PAR 2

PAR 2

-BIT 2 PAR 3

BIT 2

HAS 12

0

0

0

0
0
0

0
0
0
0

PAR 5

0

0
0
0

IN/W 8 PAR 8 PAR

IN/W 10 PAR 8

PAR 7

0
0
0
0
0
0

PAR

o O o o o o o°o

o o o o ©o o

10

o O o o o o o

O

o © O O o O o

o O o ©o o o

c O O o o o o o o o o ©

o

VOCABULARY

—--- VERBS NOUNS ——-
0: AUTO ANY
1: GO NORTH
2: *ENTE SOUTH
3: *WALK EAST
4: EXAM WEST
5: *LOOK Up
6: LIGH DOWN
7: HELP DOOR
8: UNLO KEY
9: LOCK *KEYS
10: GET ROOM
11: *TAKE BUTT
12: *PULL CAR
13: PUSH 1
14: INVE 2
15: QUIT ELEV
16: SAVE PANE
17: TURN GAME
18: DROP WALL
19: SCOR WHEE
20: MATC
21:
22:
ROOMS
=== N S E v U D ROOM DESCRIPTION ===
0: 0 0 0 0 0 0 Storeroom. Can't get here
1: 0 0 2 0 0 0 car with an open door
2: 0 0 0. O 0 0 *I'm on the curb
3: 0 2 0 0 0 0 hallway
4: 0 0 0 0 0 0 *I'm in an elevator next to
room :
S5: 0 0 6 0 0 0 hallway
6: 0 0 0 5 0 0 hallway
7: 0 0 6 0 0 0 *I'm in my apartment
8: 0 0 0 0 0 0 hospital
MESSAGES
=== MESSAGE TEXT =---—
0:
1: Welcome to "MINI-VENTURE" by Bruce Hansen
2: I was MUGGED!!
3: The match flares up
4: and goes out.
5: OK
6: The number "201" is stamped on one of them
7: The key won't fit
8: There's a plate with
9: 101 on it
10: 200 on it
11: 201 on it
12: There's a set of keys in the ignition

13: There are two buttons marked "1" and "2"
14: I see nothing special

15: HOW?

16: Say again with which button

OBJECTS

——-— START OBJECT DESCRIPTION —-—-

-1 *MY WALLET*/WALL/

Steering wheel

Apartment complex main door
Locked apartment door

Elevator

Elevator panel

Elevator

Locked apartment door

Locked apartment door

Lighted artificial light source
Open apartment door

Sign saying "LEAVE *TREASURES* HERE"
Keys/KEY/

Matches/MATC/

Car

b
CWO-NOUkWhFO

ol e
W N -
I
M OJOOMWU Uik W W -

..-\
S

The data base will be explained one section at a time.
First the HEADER:

Adventure 35 is the adventure number (Z in this case). The
version # 1is 1.01 and the adventure leaves 7837 bytes free
in a 16K machine (tape version) and 11214 bytes free in a
32K machine (disk version). These memory values are the
free bytes when using Scott Adams' ADVENTURE program. Bruce
Hansen's ADV program uses approximately 600 fewer bytes.
BYTES=1008 is the number of bytes this adventure uses,
#0BJ=14 means there are 14 objects, #ACT=41 means there are
41 actions, #VOC=22 means there are 22 verbs and 22 nouns,
#RM=8 means there are 8 rooms, CARRY=5 means the adventurer
can carry a maximum of 5 objects, START=1 means the player
starts in room 1, #TR=1 means there is only 1 treasure,
WLEN=4 means the number of significant letters in the nouns
and verbs is 4, TIME=999 means the light 1limit is 999 moves,
#MSG=16 means there are 16 messages and TR-RM=7 means the
treasure room is room 7.

ACTIONS:

The automatic actions must be placed before player input
actions. The AUTO verb signifies an auto action. The noun
is the probability of this action being considered.
ADVENTURE does not scan all player input actions, just until
it finds a true one (if one exists). All auto actions are
considered even ‘if a previous one is true.

This description does not tell what the messages, objects
and rooms are (i.e. their word description) in most cases so
refer to the above data base listing for that information.

O0: AUTO 100 -BIT 1 PAR 1 0 0 0
MSG 1 SETZ - - INTRO

The 0: means this is ACTION 0. The AUTO 100 means this auto
action 1is considered 100 percent of the time. The -BIT 1
means if bit flag 1 is cleared, this condition is true.
When ADVENTURE is started, all bit flags are cleared so on
the first pass of the auto actions this condition will be
true. This is useful for printing introductions. The PAR 1
is a parameter to be passed to the commands if all
conditions are met. If all conditions are met then the
commands are executed. In this case message 1 would be
printed and bit flag 1 would be set (SETZ). Bit flag 1 is
set since the first parameter in the conditions was a 1.
The word INTRO is an optional action title. Message 1 is
the introduction message.

1: AUTO 100 -IN 2 PAR 1 PAR 4 PAR 1 0
EXM, CT CT<-N EXM,CT - SET MUG CNTR

This is an automatic action used to set a counter. In this
adventure 1if the player is outside his car and not in the
apartment building for 4 consecutive moves he is mugged and
killed (he 1loses). This action is executed 100 percent of
the time (AUTO 100). The condition -IN 2 will be true if
the player 1is in any room other than room 2. PAR 1, PAR 4
and PAR 1 are parameters used by the commands if all
conditions are true. If all conditions are true, the CT
(counter) value is exchanged (EXM,CT) with alternate counter
1 since the first parameter in the conditions was a 1. The
command CT<(-N will set the counter to 4 (4 1is the next
parameter). And finally CT is exchanged back with alternate
counter 1 (EXM,CT). The reason for this switching is that
ADVENTURE can only operate directly on the CT variable.
ADVENTURE can operate on a maximum of 9 additional alternate

counters however. SET MUG CNTR is the optional action
title.

2: AUTO 100 1IN 2 PAR 1 0 0 0

EXM, CT CT-1 CONT - MUGGED?
This condition is considered 100 percent of the time. The
condition IN 2 passes if the player is in room 2. PAR 1 is
a parameter used in the commands. If all conditions are
true the commands are executed. In this case CT is
exchanged with alternate counter 1 (EXM,CT) since the first
parameter found was a 1. Then CT is decremented (CT-1).
CONT means to continue considering all following AUTO O's
until an AUTO 1-100 or a player input action is found. 1In
this case the next two actions are AUTO O's. There are as
follows:

3: AUTO O CT= 0 0 0 0 0

MSG 2 DEAD FINI -
4: AUTO O PAR 1 0 0 0 0
EXM,CT - - -

In action 3, CT is tested to see if it is equal to 0 (CT=
0). If it does, then message 2 (MSG 2) is printed, the
player is killed (DEAD) and the game is finished (FINI). If
the counter was not equal to zero then action 4 is
considered. It would normally be considered regardless of
the pass/no pass status of action 3. But in this case since
the DEAD command was issued the player was moved to the last
room and killed. The FINI command then halted the game.
This halts the auto actions. Since action 4 has no
conditions it is always true and PAR 1 1is passed to the
commands. In this case, CT 1is exchanged with counter 1
again thus putting them back in their starting positions.
There 1is a good reason for making these two actions
separate. Two tasks need to be done, check if the counter
is equal to zero and switch CT back with alternate counter
1. If these two were put in the same action and the counter
(CT) did not equal =zero, then the commands would not be
performed. In this case the EXM,CT command would not be
done so the counters would not be returned to the right
place.

5: AUTO 100 -IN 2 BIT 15 0 0 0

DAY DSPRM - - IN LIGHT?
This auto action is considered 100 percent of the time. The
conditions are -IN 2 and BIT 15. =-IN 2 is true if the

player is not in room 2. BIT 15 passes if it is dark (bit
flag 15 is defined by ADVENTURE for light/dark status). If
the conditions are true, then the commands DAY and DSPRM are
executed. The DAY command makes it day and DSPRM displays
the current room. The reason for this action is to make it
day after the player is off the curb (where it is dark).
The BIT 15 condition is included so it is made DAY only when
it was Jjust NIGHT. The reason for this is that the DSPRM
command makes the screen "flicker'" when it is executed.

6: AUTO 100 1IN 2 -BIT 15 O 0 0

NIGHT DSPRM - - IN DARK?
This action is considered 100 percent of the time. If the
player is in room 2 (IN 2) and bit flag 15 is cleared (-BIT
15) then the commands are performed. NIGHT makes it dark
out (if the player is not holding the artificial light
source) and DSPRM displays the room. This action makes it
dark when the player is on the curb (room 2) and only does a
NIGHT and DSPRM if it was previously DAY. The reason for
not doing a DSPRM every time is that it causes the screen to
be redrawn, which makes it 1look 1like the screen jJjust
glitched.

7: LIGH MATC HAS 13 PAR 9 0 0 0

AGETX DSPRM MSG3 CONT LIGHT MATCH

This 1is the first player input action. 1If the player types
in LIGHT MATCH then this action is considered. 1If even one
of the conditions of this action are not met, then ADVENTURE
continues searching the actions for another LIGHT MATCH. 1If
it finds another, it considers that one also, and so on
until it finds a true one. If no other LIGHT MATCH is found
then the message "I can't do that . . . yet!" is printed and
the player is asked to respond again. The condition in this
action is HAS 13. So if the player HAS 13 (has the matches
- object 13) the commands are performed. AGETX will make
object 9 (from PAR 9 in the conditions) be carried by the
player regardless of the carry limit. DSPRM will make it
day 4if it 1is currently light out or object 9 is available
(the artificial light source). Since an AGET 9 was Just
executed, the DSPRM will make it light if it was dark out or
leave it light if it was light. Message 3 is then printed
(MSG 3) and the CONTinue flag is set. All following AUTO O
actions will be considered. These actions are as follows:

8: AUTO O PAR 9 0 0 0 0
DELAY DELAY X->RMO DSPRM

9: AUTO O 0 0 0 0 0
MSG 4 - - -

Action 8 has no conditions so its commands are executed. A
DELAY command makes the program stall for about 1 second.
After two such stalls, the PAR 9 object is put back in RMO
(X->RMO - PAR 9 is the first parameter from the conditions).
After the artificial light source is removed from the room
another DSPRM is executed. This will make it dark again if
it was dark before the match was 1lit or 1light if it was
light before the match was 1it. Action 9 is considered
next. Since it has no conditions its commands are
performed. In this case message 4 1is printed. Since
ADVENTURE found a matching player input action it does not
consider any following player input actions and now checks

the automatic actions (ones at the beginning of the
actions).

10: GET KEY 1IN 1 RMO 12 PAR 12 0 0
MSG 5 AGETX - -
If the player types in GET KEY this action is considered.
It passes if the player is in room 1 (IN 1) and object 12 is
in room O (RMO 12). If these conditions are true, then
message 5 is printed (MSG 5) and the player is forced to
pick up object 12 (AGETX - PAR 12 passed from conditions).
The logic of this action is simple. The player must be in
the car (IN 1) and not have already gotten the keys some

time before (RMO 12) for the player to be able to get the
keys.

11: GET KEY IN/W 12 PAR 12 0 0 0
GETX MSG 5 - -

If action 10 failed for any reason then this action is

considered since they both have the same verb-noun
combination. In this action the player is allowed to pick
up object 12 if he is in with, but not carrying, object 12
(IN/W 12). If true, a GETX command is performed and message
5 is printed (MSG 5). A GETX checks to see 1if the carry
limit 1is exceeded. 1If not the player picks up object 12
(GETX - PAR 12 from the conditions). This action would not
be needed if action 10 was not included. Objects which are
named (/name/ at the end of the object description) can
normally be picked up and dropped without this type of
action. But by having a GET action for object 12, the
automatic GET feature for that particular object is
disabled. In this case, GET has to be included in the
actions.

12: DROP KEY HAS 12 PAR 12 O 0 0

DROPX MSG 5 - -
If the player is carrying object 12 (HAS 12) then object 12
is dropped (DROPX - PAR 12 from the conditions).

13: EXAM KEY AVL 12 O 0 0 0

MSG6 - - -
If object 12 is either being carried or is in the same room
as the player (AVL 12), then message 6 is printed (MSG6).
This type of action is very common for such things as
examining, reading, etc.

14: GO DOOR IN 2 PAR 3 0 0 0

GOTOY MSG5 - -
If the player is in room 2 (IN 2) then the player is sent to
room 3 (GOTOY - PAR 3 from the conditions) and message 5 1is
printed (MSG5). This 1is a common action for GOs without a
direction. For example, GO CAVE, GO TUNNEL, etc.

15: UNLO DOOR HAS 12 IN/W 3 O 0 0

MSG7 - -
If the player types UNLOCK DOOR this action 1is considered.
There are three doors in this adventure and the player has a
key which will open only one of them. If the player has
object 12 (HAS 12), and 1is in the same room as object 3
(IN/W 3) then message 7 is printed.

16: EXAM DOOR IN/W 3 O 0 0 0
MSGS8 MSG9 - -

This is a common type of EXAMINE action. A message is
printed when the object is examined, provided the player is
by the object. The IN/W condition is usually used for an
object which can not be carried. The AVL condition is used
for an object which can be carried. 1In this case, if the
player is in with object 3 (IN/W 3), then messages 8 and 9
are printed (MSG8 and MSGY9). Note that message 8 contains
only the first half of the EXAM message. The second half is
message 9 for this door. Message 10 and message 11 are used
for the second halves of the two doors which can not be

opened by the player (all three use the same first half of
the EXAM message).

17: EXAM WHEE IN 1 RMO 12 0 0 -0
MSG12 - -

This EXAMINE action has two conditions. If the player is in
room 1 (IN 1) and object 12 is in room O (RMO 12) then
message 12 is printed (MSG12). The logic for this action is
as follows: 1if the player examines the wheel and the Kkeys
(object 12) are still +there (RMO 12) then an appropriate
message 1is printed. However, if the keys had been
previously picked up then this EXAMINE would fail and

ADVENTURE would search for another matching EXAM WHEE (or
EXAM ANY).

18: GO ELEV IN/W 4 PAR 4 0 0 0
GOTOY MSG 5 - -
19: GO ELEV IN/W 6 P4R 4 0 0 0

GOTOY MSG 5 - -
These two actions are described together since they are very
similar. There are 2 objects called "ELEVATOR" in this
adventure. One is on the top floor, the other on the bottom
floor. These actions check if the player is in with an
elevator (IN/W 4 or IN/W 6) and if so sends the player to
room 4 (GOTOY - PAR 4 from the conditions).

20: EXAM PANE IN/W 5 O 0 0 0

MSG13 - - -
If the player is in with object 5 (IN/W 5) then message 13
is printed (MSG13). 1If the player is not in with object 5
ADVENTURE searches for another EXAM PANE.

21: PUSH 1 IN 4 PAR 2 0 0 0
CLRZ MSGS - -

This action uses a Lit flag. If the player is in the
elevator (IN 4) +.en bit flag 2 is cleared (CLRZ - PAR 2
from the conditions). When this adventure was written it
was decided to use bit flag 2 cleared for floor "1" and bit
flag 2 set for floor "2." Since the elevator would
initially be at floor "1" this was logical because all bit
flags are cleared at the start of ADVENTURE. The status of
the bit flag is tested so ADVENTURE knows which floor of the
apartment complex to send the player when he leaves the
elevator. There are two different rooms adjacent to the
elevator so this condition must be checked.

22: PUSH 2 IN 4 PAR 2 0 0 0
SETZ MSGS - -

This action is very similar to the above action except the
bit flag is set, not cleared. This tells ADVENTURE to put

the player on the 2nd floor when he leaves the elevator
instead of the 1st floor.

23: GO ROOM IN 4 -BIT 2 PAR 3 0 0

GOTOY MSG5 - -
If the player is in room 4 (IN 4) and bit flag 2 is cleared
(-BIT 2), then the player is sent to room 3 (GOTOY - PAR 3
from the conditions) and message 5 is printed (MSG 5). In
words, if the player is in the elevator, and he last pushed
1" then he is sent to the lst floor. If bit flag 2 is
set, however, then this action will fail.

24: GO ROOM IN 4 BIT 2 PAR 5 O 0

GOTOY MSG5 - -
If the player is in room 4 (IN 4) and bit flag 2 is set (BIT
2), then the player is put in room 5 (GOTOY - PAR 5 from the
conditions) and message 5 is printed (MSG 5). 1In words, 1if
the player is in the elevator, and he last pushed "2", then
he is sent to the 2nd floor.

25: UNLO DOOR IN/W 7 HAS 1 0 0 0

MSG7 - - -
This action is the same as action 15 except this action is
for a different door (object 7, not object 3).

26: EXAM DOOR IN/W 7 O 0 0 0
MSG8 MSG10 - -

27: EXAM DOOR IN/W 8 O 0 0 0
MSG8 MSG11 - -

28: EXAM DOOR IN/W 10 O 0 0 0

MSGS8 MSG11 - -

These three actions are included together since they are
very similar (the only difference 1is that they refer to
different objects). Actions 27 and 28 really refer to the
same thing. In action 27, the examine refers to a closed
door in room 6. In action 28, the examine refers to the
same door except it has now been opened so object 10 is in
the room (open door) instead of object 8 (locked door).
These actions are very similar to action 16.

29: UNLO DOOR HAS 12 IN/W 8 PAR 8 PAR 10 O
EXX,X MSG5 - -

This is the only door the player can unlock. The door may
be unlocked if the following conditions are true: the
player is holding object 12 (HAS 12 - the keys) and he is in
with object 8 (IN/W 8 - locked door). If these conditions
are met then the room locations of object 8 and object 10
are exchanged (EXX,X - PAR 8 and PAR 10 from the conditions)
and MSG5 is printed.

30: LOCK DOOR HAS 12 IN/W 10 PAR 8 PAR 10 O
EXX,X MSG5 - -

This action is very similar to the previous one except this
one locks the door. To lock the door these conditions must
be met: the player is carrying object 12 (HAS 12 - the
keys) and he is in with object 10 (IN/W 10 - open door). If
the conditions are met, then object 8 and object 10 are
exchanged (EXX,X - PAR 8 and PAR 10 from the conditions) and

MSG5 is printed.

31: GO DOOR IN/W 10 PAR 7 0 0 0

GOTOY MSG5 - - .
If the player wants to go through the door, this condition
must be met: the player is in with object 10 (IN/W 10 - an
open door). If that condition was met, the player is put in
room 7 (GOTOY - PAR 7 from the conditiomns).

32: SAVE GAME O 0 0 0 0

SAVE - - -
This action lets the player save the game. No conditions
need be met so the SAVE command is always executed.

33: QUIT ANY 0 0 0 0 0

FINI - - -
This action lets the player stop the game. The ANY noun
means that the action is considered if the player's input
noun was any of the nouns in the vocabulary 1list. This

action requires no conditions to be met and performs a FINI
command.

34: SCOR ANY 0 0 0 0 0

SCORE - - -
This action will print the player's score. This message
gives the number of treasures stored in the treasure room
and the percent stored. No conditions are needed so the
SCOR command is always performed.

35: INVE ANY 0 0 0 0 0

INV - - -
This command tells the player the name of every object he is
currently carrying. The INV command is directly executed
since no conditions are present.

36: EXAM ANY 0 0 0 0 0

MSG14 - - -
This action will print message 14 (MSG14) if the object
being examined was not referred to in a previous true
examine action. This action is usually present in every
adventure. The message printed is usually something like "I
see nothing special.”

37: HELP ANY 0 0 0 0 0

MSG15 - - -
This is another common action. If the player types HELP
message 15 (MSG15) is printed provided no previous HELP
action was found to be true.

38: GO CAR 1IN 2 PAR 1 0 0 0
GOTOY MSGS - -

If the player is in room 2 (IN 2) then he is put in room 1
(GOTOY - PAR 1 from the conditions) and message 5 is printed
(MSGS) .

39: PUSH BUTT O 0 0 0 0

MSG16 - - - -
If the player PUSHes BUTTon then message 16 (MSGl6) is
printed. Since the player is supposed to PUSH 1 or PUSH 2
this action is used to tell him so.

40: TURN ANY 0 0 0 0 0
MSGS - - -

If the player tries to TURN any legal object message 5
(MSG5) is printed.

41: AUTO O 0 0 0 0 0

This action is not used.

VOCABULARY

The user must refer to the VOCABULARY words in the data base
list for this explanation. Notice that the predefined verbs
and nouns are in their proper places (AUTO, GO, GET, DROP,
ANY, NORTH, SOUTH, EAST, WEST, UP and DOWN). The only thing
special about the vocabulary words is the synonyms. Part of
the vocabulary appears as follows:

AUTO
GO
*ENTE
EXAM
*LOOK

BWN O

Synonyms are required to directly follow their primary noun
or verb in the list and must be preceded by an asterisk. In
this case *ENTE is a synonym of GO and *LOOK is a synonym of
EXAM. There may be more than one synonym for a certain noun
or verb (see verb 10 - GET). Any action entries using the
nouns or verbs must refer to a primary noun or verb, not a
synonym.

ROOMS

An example of two rooms follows:

#=-- N S E W U D ROOM DESCRIPTION

6: 0 O O 5 0 0 hallway

7: 0 0 6 0 0 O *I'm in my apartment

The 6: and 7: are the room number (6 and 7). The next six
numbers are the rooms which the player will move to if he
goes in the corresponding direction. For example, 1if the
player is in room 6 and he types GO WEST, ADVENTURE will

send him to room 5. If in room 7, typing GO EAST will put
the player in room 6. The zeros mean the player can't go in
that direction.

The ROOM DESCRIPTIONs "hallway'" and "*I'm in my apartment”
are examples of the default room message. For example, if
the player is in room 6, the room is described as "I'm in a
hallway." If in room 7 the room is described as "I'm in my

apartment." ©Putting an asterisk before the room description
disables the automatic prefix message "I'm in a."

MESSAGES

The messages are Jjust text strings. Look at message 1
however. 1In this listing the quote marks (") appear as
quote marks. However, in BASIC these will appear as at
signs (@) unless an upper/lower case modification has been
installed. If an upper/lower case conversion has been
installed, the character may look like a single quote or a
British pound sign.

Notice that message O is not used. It should be null since

it is printed by action entries when no other command is
given.

OBJECTS

Each object has a starting room and a description. Objects
which have a name, for example "Keys/KEY/" may be
automatically picked up and dropped (The name is KEY in this
case). If the starting room is -1 (like it is for *MY

WALLET*) then the object is carried by the player when the
adventure is started. Any other number is the room number
in which that object can be found. A room number of zero
means the object has not been found vyet and dis 1in the
storeroom.

Notice that object 9 is titled "Lighted artificial light
source." Object 9 is predefined by ADVENTURE as the
artificial 1light source in its lighted condition. In this
adventure, object 9 is not used (except for the LIGHT MATC
action) so no real name is given to it.

These are the steps needed to win at this adventure:

1) GET the keys from the car (EXAM WHEE will tell the
player if they are there).

2) Get out of the car by moving EAST.

3) To see, light a match.

4) Enter the apartment building by typing GO DOOR.

5) Type GO ELEV and PUSH 2 to go to the second floor.

6) GO ROOM to leave the elevator.

7) GO EAST to the second locked apartment door on the
second floor.

8) UNLO DOOR to open the locked apartment door.

9) GO DOOR and drop the wallet (the wallet is initially
carried by the player).

10) Type SCOR.

For a more 'challenging" adventure try adventures "X" and
"y'"" on THE ADVENTURE SYSTEM master diskette. These

adventures are considerably longer than this one and will
pose much more of a challenge.

Chapter 6

Solving an ADVENTURE

This chapter will briefly describe a method for solving
adventures using the ADVEDIT program.

There are two basic types of adventures: mission and
treasure.

In mission adventures, the object of the game 1is to
accomplish a task. In adventure 3, the task is to disarm a

saboteur's time bomb. In adventure 4, the mission is to
save Count Cristo.

In treasure adventures, the object of the game is to collect
treasures and store them in the treasure room.

SOLVING '"MISSION" TYPE ADVENTURES

Mission type adventures end with a winning message. The
first step to solving these types of adventures is to 1list
the messages and find the message number. This should be an
obvious message. The message number should be noted.

Next, do an XREF for that message number in the actions.
This procedure will tell you which actions display the
winning message. The number(s) of these action(s) should be
noted.

Now, 1list the action(s) containing the winning message.
Note what the conditions are. These conditions must be true
before the winning message will be displayed.

The XREF command can be used to find where the objects
needed in the winning action are referenced. This will tell
you how to get them if they are not simply laying in a room
(where they could be picked up). If a bit flag needs to be
set Dbefore the winning message is displayed, an XREF can be
done on that particular bit flag to find out what must be
done to set 1it.

The procedure continues 1in this fashion. It may take a
while to get it down pat, but it is Dbasically a simple
procedure.

SOLVING "TREASURE" TYPE ADVENTURES

These types of adventures are very similar to mission types
adventures when solving them.

The first step in solving them is to list the OBJECTS. Note
which objects are treasures.

Treasures that have a non-zero room number are simply laying
in a room. The only potential problem here is that some
actions must need to be taken to get into the room. For
example, a locked door may block the entrance of the room.
By looking at the room descriptions, it can be determined if
this room can be moved into from another room (for example,
GO EAST from another room moves you into the one 1in
question). If not, do an XREF to find what conditions must
be true to enter the room.

If the treasure has a room number of zero, then some action
must take place to drop it in a room. By doing an XREF on
the treasure, it can be determined what conditions must be
met for the treasure to enter a room so it may be picked up.

The procedure continues for all of the treasures.

It may take some time to solve an adventure by this method,
but it is possible. 1In fact, the author solved Scott Adams'
adventure 9 using this method.

However, the best way to solve an adventure is to play it
through. If you get stuck, look at the data base as little
as possible unless you're fed up with the adventure.
Remember, adventures are meant to be brain-teasers.

Appendix A

ADVENTURE Command summary

CONDITIONS:
PAR Passes a number to the commands.
HAS True if holding the object.
IN/W True if in same room as object (not holding it).
AVL True if in same room or holding object.
IN True if in room.
-IN/W True if holding object or if object is in another
room,
-HAVE True if not holding object.
~-IN True if not in room.
BIT True if bit flag set.
-BIT True if bit flag cleared.
ANY True if holding any objects.
~ANY True if not holding any objects.
-AVL True if object in another room.
-RMO True if object not in room zero.
RMO True if object in room zero.
CT<= True if counter less than or equal to number.
cT> True if counter greater than number.
ORIG True if object in original starting room.
~-0ORIG True if object not in original starting room.
CT= True if counter equal to number.
Commands:
GETX Pick up object X.

DROPX Drop object X.

GOTOY Move player to room Y.

X->RM0 Send object X to room zero.
NIGHT Make it night (set bit flag 15).

DAY Make it day (clear bit flag 15).

SETZ Set bit flag Z.

CLRZ Clear bit flag Z.

DEAD Tell player he's dead, make DAY, move to last room,
end gane.

X->Y Send object X to room Y.

FINI Stop game and ask for another game.

DSPRM Display current room and account for DAY, NIGHT.

SCORE Compute the score.

INV Tell the player what he is carrying.

SETO Set bit flag O.

CLRO Clear bit flag O.

FILL Fill artificial light source (clear bit flag 16).

SAVE Save the game.

EXX,X Exchange room location of object X with object X.

CONT Continue to next action/s.

AGETX Always get object X regardless of carry limit
status.

BYX->X

CcT-1

DSPCT
CT<-N
EXRMO

EXM,CT
CT+N
CT-N
SAYW
SAYWCR

SAYCR
EXC,CR

DELAY

Move second object X to same place as first object
X.

Decrement counter.

Display the counter.

Set counter equal to N.

Exchange current room with room held in alternate
room register O.

Exchange counter and alternate counter M.

Add N to counter.

Subtract N from counter.

Say the player's input noun.

Say the noun of the player's input noun and a
carriage return.

Start a new line.

Exchange current room with room in alternate room
register C.

Pause for about 1 second.

Appendix B

Submitting your adventures for markefing considerations

All you need to do is send a diskette with the data base(s)
on it to:

THE ALTERNATE SOURCE
1806 Ada Street
Lansing, MI 48910

TAS will review the adventure for originality and general
bugs. The adventure may not be acceptable because it is not
original (a copy of someone else's) or is thought not to be
in good taste. Or, heaven forbid, it just may not be good

enough. Before sending in any adventures ask yourself if
you would buy it if you saw 1it?

The diskette may returned with some suggestions for
improvement. TAS also reserves the right to make simple
changes to the data base to improve its play.

If your adventure is accepted, you will be notified. A
contract will be sent to you upon acceptance discussing the
royalty payment. You may decide not to market the adventure-
without going through TAS. If you so choose, remember that
the adventure driver program "ADV" is copyrighted and can

not be sold with your adventures unless written permission
is given by the author.

Please allow at least 4 weeks for the selection
procedure.

