TABLE OF CONTENTS

INTRODUCTION TOLEVELIIBASIC. oot 1
LEVEL TAUTHOR. .. .ottt 3
ABOUT THIS BOOKLET........coiiiiasinensnmmmmminnsinssereasmanss 4
PROGRAM SPECIFICATIONS. e 5
INITIALIZING YOUR COMPUTER SYSTEM. 6
LOADING LEVEL Il BASIC (Cassette File). 7
LOADING LEVEL Il BASIC (Disk File).cooiiiiiiiiiiiiiann... 8
IN CASE OF LOADINGTROUBLES. 10
FORMAT NOTATION. « scnmumiis o 5 s Sesmmamiionssse s s s s b omauamsses 12
USING LEVEL Ill BASIC
SECTION ONE: SPECIALFEATURES. 13
Shift:Key Entrls.. . : : «uciamimss s ves sambmmnnass s 3 9 damsseomens s 14
Writing Your Own Shift-Key Entries............................ ... 16
Renumbering Program Lines.................... ... oiiiiiinn 18
Spelled-Out ErrorMessages.:...coovveerssossssssnoavsnsse 21
LEVEL III's Digital Calendar-Clock.coiiiiiniinnnnnn 23
ConvertingHexandOctal. ... 25
LOCKOUt RBCOVEIY. . ..ottt ittt ettt et 26

SECTION TWO: GRAPHICS.oiiiiiiiiiiiiiiinseiaa i 27

Character MOE.ttt 28
GraphicsMOGE. . .cuivisvssss s s memmem ey 5§83 s sammesmmsss s s s oo awmms 32
The LINE Statement.ottt aaieeanns 33
EXample PTOQTAMB. « s i« - -« sismmusws s s e s sarsinmirnee oo s o s 37
The GET@ Statement... ccseaesissis semommemsds 0355 s oaiens s 40
The PUT@ Statement.ot 41
Notes on Using GET@ and PUT@.coiviiininninninnn. 43
Dimensioning GraphiC Arrays.................cooiiiiienneaaneann 44
More Example Programs.ouuuiiuioieanianneeneaeenan 45
Examples of Advanced Graphics. ...t 50

SECTION THREE: STRINGS, USER DEFINED FUNCTIONS,

AND MACHINE LANGUAGE SUBROUTINES................cooinen 53
New MID$ Capability...... ... 54
The INSTR INStIUCHION: s s vs i s s susiamenasssssssrmpamnne seavsa 56
Defining Your Own Functions.cooiiiiiiiiiniinnns 58
Machine Language User Routines.ooninn. 60

—IV—

SECTION FOUR: /O FEATURES. i, 63

The LINE INPUT Statement. 64
INPUT#LEN and LINE INPUT#LEN. 65
New LOAD and SAVE Commands................................ 66
Turning Off the System Clockc.ccoiioi... 67
Output to RS-232 Port 68
INDEX TO STATEMENTS, COMMANDS, AND FUNCTIONS. 69
IND X, . 70

—V—

INTRODUCTION TO LEVEL il BASIC

If you think there are significant differences between Radio Shack’s
Level | and Level Il Basics, be prepared for another quantum jump in per-
sonal programming!

G2's LEVEL Il BASIC is not just another Basic. It is an actual enhance-
ment to the already powerful Level Il Basic. It adds the features of Radio
Shack's Disk Basic to Level Il and you don't have to buy an expansion
box and a disk drive. And it has many mare great features including ad-
vanced graphics that turn your TRS-80 screen inta a virtual electronic
drawing board.

G2's LEVEL IIl BASIC is for TRS-80 computers with a minimum of 16K
Ram memory and Level Il Basic. It comes on cassette tape and resides
in less than 5.25K Ram memory. Even with the minimum system, this
leaves you with more than 10K Ram for programming space!

You'll soon discover that LEVEL Ill BASIC also corrects some of the
problems with Level |l Basic. It eliminates keyboard bounce and pro-
vides more reliable cassette tape loading. Two new commands, LOAD
and SAVE, replace the Level I| CLOAD and CSAVE commands. They per-
mit cassette tape interfacing without the usual “‘volume sensitivity” of
the recorder.

G2's LEVEL Il BASIC has a NAME command that will automatically
renumber program line numbers, and do it the way you specify. For ex-
ample, you can renumber a program beginning at line number 150 and in-
crement it by 25 (150, 175, 200, etc.). Line numbers following GOTOs,
GOSUBS, etc., are automatically edited to reflect the new sequence.
With this feature, you'll find it much easier to edit programs. Your pro-
grams will be better organized and you won't have to worry about run-
ning out of space between program lines.

Another major feature of LEVEL 11l BASIC is a set of 26 user-changeable
“Shift-Key Entries!’ Just press the key and the key
simultaneously and LEVEL Il will execute a RUN command. You don't
have to type R-U-N. You don't even have to use I Call it the lazy
way to computer programming if you like, but you'll soon find yourself
using this feature.

—1—

Other features of LEVEL 1l BASIC include Error Messages that are
“spelled out" instead of abbreviated; a new input instruction called
LINE INPUT that allows punctuation in an input response; an INSTR in-
struction to search a string for a substring; user defined functions;
automatic Hex and Octal conversion; and much more.

As you can see, G2's LEVEL 1il BASIC is bound to broaden your pro-
gramming horizons. It brings ease, speed, power and flexibility to your
TRS-80 Level Il Basic computer that you might have thought not possi-
ble. So dig in and start programming!

LEVEL il AUTHOR

In 1975, Microsoft wrote Altair Basic, the first Basic interpreter for a
microcomputer. Since then, Microsoft-written Basics have become the
virtual standard of the personal computing industry.

Microsoft has a reputation for quality, advanced programming tech-
niques and efficiency that is surpassed by none. LEVEL |l BASIC was
written by Microsoft President, Bill Gates. GRT acknowledges and
thanks Bill Gates for this significant contribution to the G2 Software
Library.

ABOUT TiiS BOOKLET

By necessity, the authors of this instruction booklet have assumed the
readers have some experience programming in Basic and in particula
Radio Shack’s Level Il Basic.

Still, we do not expect you to be a programming expert. Every descrif
tion has been carefully worded to avoid undue technicality. Example
are provided throughout.

This instruction booklet began as a comprehensive reference manu:
written by Andrea Lewis. It was then edited and rewritten into its currer
form by David Bunnell. GRT acknowledges and thanks Andrea Lewi
and David Bunnell for their contribution to G2 Software Documentatior

PROGRAM SPECIFICATIONS

Basic Interpreter Required—In order to use G2's LEVEL Il BASIC you
must have a Radio Shack TRS-80 Computer equtpped with Radio
Shack’s Level il Basic Interpreter.

Minimum Memory Requirement—Your TRS-80 Computer must have a
minimum of 16K RAM memory to run this software.

Tape Format— Al G2 cassette software is recorded on tape selected for
its response and suitability for recording computer software. There are
four recordings on Side One of G2's LEVEL |1 BASIC tape. These record-
ings and the order in which they are recorded include: 1) LEVEL |1l BASIC
(Cassette File), 2) LEVEL 11l BASIC (Cassette File), 3) LEVEL 11l BASIC
(Disk File), and 4) LEVEL 11l BASIC (Disk File).

. Lonnect the gray cable from the Video Monitor to the VIDEO
jack on the back of the Keyboard. Do this carefully, making
sure that the pins line up correctly.

. Using the same care as above, connect the gray cable from the
Power Supply to the back of the Keyboard.

. Connect the short cassette cable to the TAPE jack on the back
of the Keyboard.

. Connect the black plug on the other end of the cable to the
EAR jack on your recorder.

. Connect the large gray plug to the AUX jack on your tape
recorder and the smaller gray plug to the REM jack. These two
connections are not necessary for loading programs from tape.
. After double-checking all connections, turn on the POWER

switch on the back of the Keyboard and the POWER switch on
the front of the Video Monitor.

. For best results, allow your system to warm up for a few
minutes before attempting to load LEVEL |l BASIC or any

other programs.

LOADING G2's LEVEL Il BASIC
(CASSETTE FILE)

Follow these instructions to load:

1.
2.

(&)

Insert the LEVEL {Il BASIC cassette into your tape deck.

Press the key on your tape deck, and allow the tape
to rewind fully.

. Type the word SYSTEM and press |[ENTER|. Your computer

should respond with the prompt: % ?

. Following the prompt, type the word LEV3 and press |[ENTER].
. Press the key on your tape deck.
. If the software is loading ¢orrectly, two asterisks (%) will ap-

pear in the upper-right-hand corner of your video screen. The
asterisk (%) on the right should blink on and off. LEVEL 1ll
takes approximately two minutes to load.

. When the program is loaded, the prompt (% ?) will once again
appear. Press the slashkey followed by [ENTER]. If LEVEL

1l BASIC has been loaded correctly, the screen will display:

LEVEL Ill CASSETTE BASIC

A G2 PRODUCT FROM GRT
COPYRIGHT MICROSOFT 1979
READY

>

As soon as the program has been loaded, press the
key on your tape deck. Let the tape rewind, then stop the tape
deck and remove the cassette. This will protect the cassette
from any harm, no matter what you do from this point on.

If you have trouble getting a good load, see “IN CASE OF
LOADING TROUBLES" on page 10.

LOADING LEVEL Iil DISK BASIC
(DISK FILE)

The third and fourth recordings on Side One of the tape are identical
copies of the Disk File version of LEVEL 11l BASIC. This version of LEVEL
Il is for people who have TRS-80 Disk Systems and want to save LEVEL
Il on diskette. We do not mean to imply by this that LEVEL Il will work
with Disk BASIC. As an enhancement to Level Il Basic, LEVEL Il works
only with Level Il Basic.

To save LEVEL Ill on diskette, you need to have the TAPEDISK utility,
which is included with most Radio Shack Disk Operating Systems. If you
do not have this utility, check with your Radio Shack dealer.

Read the following instructions to load LEVEL Hi BASIC (Disk File) and
save it on diskette:

1.

insert the LEVEL Ill BASIC cassette into your tape recorder.
You can rewind the tape 1o its beginning or you can cue it to
the third or fourth recording.

. Turn on your TRS-80 System. The screen should display: DOS

READY.

. Type TAPEDISK | ENTER|.

4. The screen should display a question mark (?) as a prompt.
d

10.

Following this prompt, type:C DLEV3

. Press the key on your tape deck.
. If the sottware is loading correctly, a single blinking asterisk

(%) will appear in the upper-right-hand corner of the screen.

. Once the program has been successfully loaded, the ? prompt

will again appear.

. Type F DLEV3/CMD: 0 5500 6A00 5500 |ENTER].
. The first zero (0) in the above code is the Drive number. You

can save LEVEL i1l in any existing Drive, but you must enter
the corresponding number.
You should hear the “grinding” sound of the Disk Drive as
LEVEL Il is saved. Once this operation is completed, the ?
prompt will again appear. LEVEL IIl BASIC has been suc-
cessfully saved on diskette.

. S

_ To use LEVEL lll once it is saved on diskette, do the following:

—Turn the computer on. When it says, DOS READY, type
BASIC . The screen will display two questions:
FILES?, followed by SIZE OF MEMORY? Answer both with
the key.

_Once Disk Basic is up and running type CMD“S"”
.This will get you back to DOS so you can load the
LEVEL Il file.

—Type DLEV3 |ENTER]. LEVEL 11l should come up on the
screen and you are ready to program.

IN CASE OF LOADING TROUBLES

Your TRS-80 may be very “volume sensitive’ when it comes to loading
cassette tapes. While LEVEL 11l BASIC eliminates this problem with its
new LOAD and SAVE commands, you still have to load LEVEL Il using
the LEVEL Il SYSTEM command. This is a common frustration, but it can
usually be alleviated by trying one of the following:

1. Recheck all power lines and interconnecting cords.

2. Remove cable from the earphone jack of your tape:deck, and
play the tape. You should hear both the leader tones and the
digital program signals clearly. If you do not hear these
sounds, your tape deck may be faulty. Try it with a different
tape deck.

3. The most common loading problems are due to improper set-
tings of the tone and volume contrals on your tape deck.
When loading cassettes, adjust your volume control up one
half level at a time. The tone control is less critical, but adjust
it also.

Once you have successfully loaded a tape, jot down the cor-
rect settings on the cassette label.

Since no two tape decks have exactly the same
characteristics, it is impossible to give you specific machine
settings. But a little trial-and-error will establish the best
settings.

4. If you still cannot load a tape, you may need to clean the head
on your cassette recorder. Use a high quality head cleaner,
one with a proper cleaning pad. Watch out for cleaner-tapes,
they are often abrasive and have been known to scratch a
head or two!

There are many sources for head cleaning kits including
Radio Shack.

5. Demagnetize the head on your tape recorder. Through con-
tinuous use, the head builds up a thin layer of magnetism
which affects its ability to accurately read tapes. You can buy

A, N

10.

11.

a simple device called a “"Head Demagnetizer” for about $5
and up that does this task. Ask your Radio Shack dealer or
electronics dealer tor a demonstration.

Try running the tape through Rewind and Fast Forward a few
times. This will remove dust or other material on the tape that
is preventing a load.

Let your computer warmup for a few minutes before attempt-
ing to load programs.

. Try a different cassette recorder.
. Problems can result from fluctuations in your power lines,

though this is rare. As a precaution, try restricting the TRS-80
to its own circuit. if possible, even run your cassette recorder
and video monitor on a separate line.

Ask your Radio Shack dealer about their “cassette modifica-
tion” fix for Level Il Basic computers. This is a hardware fix
that might be covered by your TRS-FO warranty. it should
make the volume control on your recorder less sensitive.

If you are still not having much success, discuss the problem
with your local computer dealer.

L P

FORMAT NOTATION

To aid you in reading and understanding this instruction booklet, a for-
mat notation has been devised for introducing statements, commands,
and functions. An example of this notation is as follows:

M4P$(string1, n[,m]) = string2
Items in lower-case are to be supplied by the
user. In this example, “'string1” and *'string2"”
refers to information which the user will
supply.

Items in square brackets [] are optional.

All punctuation except square brackets [] must be included.

Capital letters must be input exactly as shown.

The following rules apply to notation:
1. ltems in capital letters must be input exactly as shown.
2. Items in lower case letters are to be supplied by the user.
4. Items in square brackets [] are optional.
5.

Ail punctuation (i.e, commas, parentheses, semicolons,
hyphens, equal signs) except square brackets [] must be in-
cluded where shown.

6. All blank spaces are optional, unless otherwise noted.

—12—

USING LEVEL Il BASIC

SECTION ONE: SPECIAL FEATURES

INCLUDING:
¢ SHIFT-KEY ENTRIES
¢ WRITING YOUR OWN SHIFT-KEY ENTRIES
* RENUMBERING PROGRAM LINES
¢ SPELLED-OUT ERROR MESSAGES
* LEVEL 1II’'S DIGITAL CALENDAR-CLOCK*
* CONVERTING HEX AND OCTAL
* LOCKOUT RECOVERY

The “Special Features" of LEVEL Ill BASIC are presented here first
because some of them can be of immediate use. This is particularly true
of the time-saving technique called Shift-Key Entries which allow you to
enter instructions or string expressions by simultaneously pressing
and a letter key (A-Z). You'll also want to know about
Renumbering Program Lines and about Spelled-Out Error Messages
before you go on.

*Requires that your TRS-80 include an Expansion Box

e B es

SHIFT-KEY ENTRIES

With Shift-Key Entries you can instantly enter Basic instructions and
frequently used string expressions. These might include common
responses to INPUT statements or just about any frequently used
phrase or formula. All you have to do is hold down andtypeina
single letter from A to Z

For example, |SHIFT E instantly enters the instruction, PRINT.

LEVEL IIl BASIC contains a complete list of 26 Shift-Key Entries. These
include mostly Basic statements and commands.

For added convenience, the commands CONT, EDIT,_and RUN are com-
bined with . In other words, if your enter , the com-
puter will respond with CONT (ENTER). You will not have to press the
key. Other Shift-Key Entries include punctuations such as left
parentheses and leading quotation marks.

LSET LIST. LEVEL Il BASIC maintains an updated list of Shift-Key

Entries that you can display on your screen by typing LSET LIST and
pressing [ENTER!. If you change any of the Shift-Key Entries (see
following section), this list will be automatically updated.

— 4=

For your added convenience, they are also listed here as follows:

LEVEL Il BASIC
Shift-Key Entries

SHIFT Key Sequence
AUTO
GET@(
ELSE
EDIT4

EDIT

GOTO
GOsuB
INKEY$
INPUT

LINE INPUT
LINE(

LIST

LSET
NEXT
PRINT USING
PUT@(
RETURN
RUN{
SAVE"
THEN
TIMES
LOAD*"
LEFT$(
MID$(
RIGHTS$(
STRINGS$(

N<XS<CcCH0wWIDITOUDTVOZITrXe«e—-—IOTMOO®D>»

NOTE. The downward arrow (4) is the symbol in this chart for |[ENTER].
—15—

WRITING YOUR OWN SHIFT-KEY
ENTRIES

You can use the LSET Command to write your own Shift-Key Entries. The
format of this command is as follows:

LSET letter = “string expression”
Up to 15 characters
Any single letter (A-Z)

Command
The LSET Command

The “'string expression” in an LSET command can be any string of up to
15 characters. This makes it possible to use Shift-Key Entries for any oc-
cassion where a repeated phrase or formula is entered into the com-
puter. In addition to storing frequently used statements and commands,
Shift-Key Entries are often used to store “input responses.’

Example. When writing programs that use LEVEL 11! graphics, you fre-
quently find yourself typing in the same first five characters of a LINE
statement, namely LINE(. You could make LINE(a Shift-Key Entry with
the following:

LSET L ="LINE("

From this point on, LINE(will replace LIST

Press [SHIFT] [L] and your TRS-80 screc
LINE(

To change the Shift-L sequence back to LIST you simply reverse the pro-
cess by entering:
LSET L="LIST" [ENTER

Note. Loading LEVEL IIl will always bring up the orginal Shift-Key
Entries.

25 the “Shift-L sequence!’
Il display:

Example. Some programs may require you to repeatedly input phrases
such as “TOTALS]" “AVERAGE TO DATE, “SALES TAX.' etc. You can
save typing time by turning these phrases into Shift-Key Entries, such
as:

LSET T="TOTALS" lENTERl

LSET A = “AVERAGE TO DATE”

LSET S = “SALES TAX”
and the word TOTALS will appear on the screen.
[SHIFT] [A] returns AVERAGE TO DATE, and [SHIFT] [5] returns
SALES TAX.

Shift-Key Entries with ENTER. The downward arrow (4) is used in the
LSET list as a symbol for ENTER. However, it is not recognized as such
by Basic. Pressing [1] will cause the cursor to move down to the next
line.

To add ENTER to one of your own Shift-Key'Emries, you use the CHR$
string with the ASCII value for ENTER (13). Technically speaking, you
concatenate the ENTER key on the rest of the string. The format is as
follows:

LSET R="RUN" + CHRS$ (13) |ENTER

LSET RESET. You can ‘“‘turn off” all the Shift-Key Entries by typing LSET
RESET, and pressing [ENTER|. The purpose of this command is to free
shift-letters for possible use with printers that have lower-case letters.

LSET SET. This command will turn Shift-Key Entries back on again.

Note. Available Ram memory is not affected in any way by using LSET
SET or LSET RESET.

- 17—

RENUMBERING PROGRAM LINES

Renumbering program lines is a very useful feature that eases the path
to programming excelience. You can renumber to ““make room" in a pro-
gram sequence where additional lines need to be inserted or you can
use it to better organize program lines.

The NAME Command. In LEVEL 11l BASIC, the NAME Command is used
to renumber program lines. It is a really flexible command, as you can
see by its format:

NAME [[new number] [{old number] [increment]}j
3

increment of new
sequence (optional)

Line number where
you want to begin
new sequence (optional)

First line number of
new sequence (optional)

Command The NAME Command

The NAME command automatically updates all the line number
references following GOTO, GOSUB, THEN, ELSE, RESUME, IN-
PUTHLEN, ON...GOTO, and ON...GOSUB. The first time you execute a
NAME command these particular line numbers are allotted a total of
five spaces each. This creates a gap in some statements such as, 10
GOTO 50, 80, 100. On subsequent executions of NAME, this gap
remains but is not again increased in size.

From zero to three numbers can follow the NAME command. They are
optional and include the following:

— New number. This refers to the first line number in a new se-
quence. If you don't inciude it, the first number witi be 10.

—Old number. This is the current line number where you want the
new sequence to begin. If, for example, you wanted a program

—18—

to be renumbered beginning at line number 500, you would put
500 at this location. If you don't include an “old number.’ the
complete program will be renumbered from its beginning line
number.

—increment. This is the increment you want in the new sequence.
If you don't use it, the program will be renumbered in a se-
quence of 10 (10, 20, 30, 40, 50, etc.).

Examples. The three optional numbers following the NAME command
make it very versatile. You can use it to renumber program lines in any of
the following ways:

Command Explanation

NAME Renumbers the entire program. The
first line number will be 10 and
each following line number will be
incremented by 10 (10, 20, 30, etc.).

NAME 100 Renumbers the entire program. The
first line number will be 100 and
each following line number will be
incremented by 10 (100, 110, 120
etc.).

NAME 100, 50 Renumbers program beginning at
line 50. Line 50 will become line 100.
Each following number will be in-
cremented by 10 (100, 110, 120, etc.).

NAME 100, , 50 Renumbers entire program. The
first line number will become 100
and following line numbers will be
incremented by 50. (100, 150, 200,
etc.).

NAME , 100 Renumber program beginning at
existing line 100. Line numbers
following 100 will be incremented
by 10 (100, 110, 120, etc.).

—19—

NAME , , 100

Renumbers entire program. The
first line number will become line
10 and the following numbers will
be incremented by 100 (10, 110, 210,
etc.)

NAME , 500, 20

Renumbers program beginning
with existing line number 500. In-
crements by 20 (500, 520, 540, etc.).

NAME 100, 50, 20

Renumbers the program—begin-
ning at existing line number 50.
Line 50 will become line 100. In-
crements by 20 (100, 120, 140, etc.)

Note. NAME cannot be used to change the order of program lines. Also,
it will not create a line number greater than 65529. An ILLEGAL
FUNCTION CALL error will result if either of these is attempted.

If you omit “THEN" from an IF.THEN statement the following line
number will not change when you use NAME. In the statement, 30 IF
A$ = “YES" 60, the number 60 will not be changed. However, in the state-
ment, 30 IF A$="YES" THEN 60, the number will be changed

accordingly.

—20—

SPELLED-OUT ERROR MESSAGES

Level 11l saves you the trouble ot looking up error code abbreviations by
printing out the complete error message. Instead of displaying the Level
Il code:
?TM ERROR IN 10
for a Type Mismatch error, Level Ill displays:
TYPE MISMATCH IN 10

All Level IIl error messages are listed on your Level |ll Basic Reference
Card. For convenience, they are also listed here as follows:

LEVEL Il ERROR MESSAGES

Error Level Il Level Il
Code Abbreviation Error Message
1 NF NEXT without FOR
2 SN Syntax error
3 RG Return without GOSUB
4 oD Qut of data
5 FC Illegal function call
6 oV Overflow
7 oM Out of Memory
8 uL Undefined Line
9 BS Subscript out of range
10 DD Redimensioned array
11 10 Division by zero
12 1D lllegal direct
13 ™ Type mismatch
14 (OF] Out of string space

21—

Error Level Il Level Il

Code Abbreviation Error Message
15 LS String too long .
16 ST String formula too complex
17 CN Can't Continue
18 NR No RESUME
19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk Basic only

More Information. For further explanation of these error messages, refer
to Appendix B, pages B/2-B/3 of your Radio Shack LEVEL Il BASIC
Reference Manual.” If you don't have a copy of this publication, check
with your Radio Shack dealer.

*LEVEL Il BASIC Reference Manual, Copyright 1978 by Hadio Shack. A Division ol Tandy
Corporation, Ft. Worth, Texas, 76102

—22—

LEVEL lII'S DIGITAL CALENDAR-CLOCK *

LEVEL Il stores a string, TIMES, that keeps track of the date and time,
providing your TRS-80 Computer system includes a Radio Shack
Expansion Box. This accessory is necessary because TIMES requires a
Rea! Time Clock, a feature of the Expansion Box.

TIMES$ can be utilized like any other string. It can be used in any program
where timing is useful, or where you might want to display the date.

The CMD “R” Command. When you load LEVEL IlIl BASIC, the TIMES
string contains all zeroes. You can set it to the correcttime and date or
to any time and date you want by using the CMD"'R" command. The for-
mat of this command is as follows:

CMD"“R", “mm dd yy hh mm ss"” |ENTER

A} A A
seconds

minutes

hours

year

day

month

Command

Notice that you are not required to enter dashes or commas between
each number. The format for TIME$ has been done for you and it is fixed.

*Requires Radio Shack's TRS.80 Expansion Box

—23—

Each entry requires a two digit number. If the date is May 7, enter 07
for day.

The hh (hours) is based on a 24-hour clock which includes hours 01to 24.
The morning hours (a.m.) are 01 to 12, while the afternoon hours are 13
to 24.

Example. To set the date, July 25, 1979, and the time, 2:15 p.m, enter:
CMD"R", "07101 79 14 15 00" ENTER

leave one space

Regardless of whether you set the Digital Clock-Calendar or not, it
begins keeping track of the time and date the instant LEVEL Il BASIC is
loaded. All settings start at 00.

Hints on Using TIMES. You can use TIME$ with RIGHTS, LEFTS, or MID$
to display one or any combination of the elements in the Digital Clock-
Calendar. For example, the instruction, PRINT LEFT$(TIMES, 8) will
return just the date. Other examples include:

Instruction Explanation
PRINT RIGHT$(TIMES, 2) Returns seconds
PRINT MID$(TIMES, 10, 2) Returns hours
PRINT MID$(TIMES, 13, 2) Returns minutes
PRINT RIGHT$(TIMES$, 8) Returns time

The computer will recognize the above “Returns’” as string elements,
not numbers. Therefore, you cannot use these commands to make com-
parisons. In order for the computer to recognize the returns as numbers,
you need to use the VAL function. For example:

10 X = VAL (MID$(TIMES, 10, 2))

20 IF X<12 THEN 80

—24—

HEXADECIMAL AND
OCTAL CONSTANTS

Level Ill includes a routine that automatically converts hexadecimal
(base 16) and octal (base 8) numbers into decimal numbers.

Thus, hexadecimal and octal numbers can be supplied directly to Basic
programs, which always require decimal numbers. You don't need to do
the conversion. Simply prefix hexadecimal numbers with and
octal numbers with [&].

This will work with all Basic statements and commands except DATA
statements or in response to INPUT statements.

You can use this feature as a simple conversion calculator by using the
PRINT command. For example, to convert the hexadecimal number
4ASF to decimal, enter:

PRINT &H4A5F
and the computer will answer with: 19039.
Example. If you want to POKE the hex value FF (255 decimal) into {oca-
tion 4A5F (19039 decimal), use the statement:
POKE &H4A5F, &HFF
A subsequent PEEK at location 19039 will return the value 255.

., -

LOCKOUT RECOVERY

A System Lockout is when you lose control of your computer. it just sit
there and “smiles’ at you. No matter what key you press, nothing hajg
pens.

In Level Il Basic, you can get out of this problem by pressing the RESE
button in the back, upper-left-hand corner of the keyboard cas:
However, if you have an Expansion Box this will result in a complete los
of your program from memory.

LEVEL Il BASIC eliminates this problem by allowing you to use tt
BREAK | key just as you would use RESET. Using the |BREAK| ke

even with an Expansion Box, will not resuit in the loss of a program. Tt
system will start up again, and your program will be preserved.

—26—

USING LEVEL iil BASIC

SECTION TWO: GRAPHICS

INCLUDING:
* CHARACTER MODE
* GRAPHIC MODE
¢ LINE STATEMENT
* EXAMPLES CF GRAPHICS PROGRAMS
* GET@ STATEMENT
¢ PUT@ STATEMENT
* NOTES ON USING GET@ AND PUT@
* DIMENSIONING GRAPHIC ARRAYS
* MORE EXAMPLES OF GRAPHICS PROGRAMS
¢ EXAMPLES OF ADVANCED GRAPHICS

If you've had any experience at all working with Level {I graphics, you
will immediately recognize the expanded possibilities that LEVEL fif
graphics give you.

LEVEL 1 graphics will generate a line or rectangle between any two
points on the screen. This frees you from the tedious task of defining all
the points yourself, as you must do in Level | Basic.

LEVEL Ill graphics also let you store a graphic array for later use on the
same or a different portion of the screen. With this added capability,
you'll find yourself writing more programs with graphs, pictures and
even animation.

—27—

CHARACTER MODE

There are two modes of graphics presentation called Character Mode
and Graphics Mode. In the first of these, your TRS-80 screen is divided
into a grid that measures 64 ‘“character positions" across by 16
character positions down.

-~ X(0-63) —

vos)

SCREEN (Character Mode)

Each character position in Character Mode is further broken down into a
two-by-three grid of “‘graphic blocks™ that look something like this:

T

When you are in Character Mode, you can pul any alpha-numenc
character on the screen at any specified character position. Also, you
can use any one of a set of special 'graphic symbols’’

—98-—

There are 64 graphic symbols made possible by filling different com-
binations of graphic blocks in a character position, such as

Using CHRS. To specify a particular graphic symbol, the string expres-
sion CHR$ is used. This expression will return any alpha-numeric
character or graphic symbol when the appropriate ASCII value is sup-
plied with it, such as CHR$(147).

Each alpha-numeric character has been assigned an ASCII value of
from 32 to 127, while each graphic symbol has a value of 128 to 191.

The ASCII values and their corresponding alpha-numeric characters are
listed on page C/2 of your LEVEL Il BASIC Reference Manual. The follow-
ing program will display the graphic symbols with their corresponding
number:

10 FOR X =129 to 191
20 PRINT X; :PRINT CHR$(X)
30 NEXT

Instead of running the above program each time you want the value for a
specific symbol, you can determine the value with the following:

1. Assume that each graphic block has the following value:

2. The code for any graphic symbol is 128 plus the total value of
the graphic blocks that are to be “‘turned on.’ CHR$(128) returns
a blank space. CHR$(129) turns on the upper-left-hand graphic
block. CHR$(128 + 11) looks like this:

Character Mode Coordinates. When using the Level |l Basic statement,
PRINT@, each character position is assigned a unique number from 0 to
1023. These positions are illustrated by the “TRS-80 Video Display
Worksheet' on page E/1 of your LEVEL il BASIC Reference Manual.

Thus, if you wanted to display the message, “THE GAME IS UP}" in the
middle of the screen, you could do so with the following:

PRINT@ 468, “THE GAME IS UP” |ENTER
However, when using LEVEL Il BASIC graphic statements (LINE, GET@,
and PUT@) in Character Mode, the X" coordinates (0-63) and the "Y"
coordinates (0-15) are used to define character positions. Position 468 is
referred to as “'20, 7" where the X coordinate is 20 and the Y coordinate
is 7.
You can convert from character position numbers to “X" and "Y' coor-
dinates by using the following formulas:

X=N-(64%Y)

Y = INT(N/64)

In the above example, character position 468 would be converted as
follows:

X = 468 — (64 % 7) Y = INT(468/64)
X = 468 — 448 Y= INT(7.31)
X =20 Y=7

—30—

To convert the other way, from coordinates to character position
number, use:

N=(Y %64 + X)
Using the same example:
N = (7 % 64 + 20)

N = 448 + 20 = 468

The most important thing to remember is simply thatin Character Mode
the screen is 64 across by 16 down.

=3

The second mode of graphic presentation is called the Graphics Mode.
In this mode, the screen is divided into a much finer grid using the
graphic-blocks described above. The grid is 128 across by 48 down:

X(0-127)

Y(0-47)

SCREEN (Graphics Mode)

The Level Il Basic functions SET, RESET and POINT use the screen in its
Graphics Mode. Thus, if you want to turn-on graphic-block 10,29, you can
do so by entering:

10 SET (10,29)
RUN ENTER

For more information on SET, RESET and POINT see pages 8/1-8/2 of
your Radio Shack LEVEL Il BASIC Reference Manual.

The graphic statements LINE,GET@andPUT@can be used in either
Character or Graphics Mode. Descriptions of their uses are found in the
following pages.

—R2-—

THE LINE STATEMENT

The LINE statement can be used to draw a line between any two points
on the screen or to draw a rectangle, assuming the two points are op-
posite corners of the rectangle. It can be used in both the Character
Mode and the Graphics Mode.

The format of the LINE statement in Character Mode is as follows:
LINE (x1,y1) — (x2,y2), “string expression" [,B[F]]
i —— A

4
P Fill in box
(optional)

Creates a box
(rectangle) as
defined by the two
points (optional)

Any string or
function that
returns a string

Defines two
Character Positions

Statement

LINE Statement
(Character Mode)

When the LINE statement in Character Mode is executed, a line or rec-
tangle is drawn between points (x1y!) and (x2,y2) using the first
character of the string expression. Thus, if the string expression is “XEO
GEE GOLLY; the line or rectangle will be drawn using the X character
only.

—33—

The string expression may be a string literal as above, or it may be a
string variable (such as A$), or it may be a function that returns a string
(such as CHR$(142)).

The statement, 10 LINE (32,14)-(45,10), CHRS$ (129), would generate a line
between character positions (32,14) and (45,10) using the graphic symbol
described by CHR$ (129).

True lines can only be generated if they are vertical or horizontal. Ex-
ecuting the following statement:

10 LINE (32,14)-(45,10)," X"
will result in a line that looks like this:
X
XXX
XXX
XXX
XXXX

If the optional B is included in a LINE statement, a box (rectangle) de-
fined by the two points is drawn. Adding “B" to the above example:

10 LINE (32,14)-(45,10),"X"",B

don't forget
the comma

will result in a rectangle that looks like this:
XXXXXXXXXXXXXXX

X X
X X
X X

XXXXXXX XXX XXX XX
34—

If the optional BF is included, a filled-in rectangle is drawn. Adding BF to
our example:

10 LINE (32,14)-(45,10),“X"",BF
results in the following:

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXAXXXXXXX

XXXXXXXXXXXRXXXX

Obviously, you cannot draw a rectangle between two horizontal or two
vertical points. The points have to define diagonally opposite cormers of
the rectangle.

To clear the screen of the above graphic, a blank string (** ') can be used
such as:

20 LINE (32,14)(45,10)," "",BF

- T

The LINE statement can also be used in the Graphics Mode. The format
of the LINE statement in the Graphics Mode is:

LINE (x1,y1)-(x2,y2), SET [,B [F]]
4 ——

4 Fill in box
(optional)

Creates a box
as defined by
the two points
(optional)

Turn on
graphic-blocks

Defines two
graphic-block
positions

Statement

LINE Statement
(Qraphlcs Mode)

When the LINE statement in Graphics Mode is executed, a line or rec-
tangle is drawn between points (x1,y1) and (x2,y2) by turning on the ap-
propriate graphic-blocks.

As in the Character Mode, the B and the BF are optional. Adding a “B"
to a LINE statement results in a box (rectangle) defined by the two
points. Adding a “BF'' results in a filled-in box.

The word SET in a LINE statement can be replaced with the word
RESET. RESET will turn-off or erase the line or rectangle described by
the statement.

—36—

HAVING FUN WiTH BOXES

The following program will draw a filled-in box on the screen, leave it for
a few seconds, then erase it:

Program Explanation
10 CLS clears screen
20 LINE (10,33)-(18,39),SET,BF turns on box
30 FOR Z=1TO 350: NEXT timing loop

40 LINE (10,33)-(18,39),RESET,BF turns off box

A few simple modifications to the above program will make the box
“animated". It will appear to move across the screen:

Program Explanation

10 CLS clears screen

20 X=10:X1=18:Y =33:Y1=39 assigns value

30 LINE (X,Y)-(X1,Y1),SET,BF turns on box

40 FOR Z=1 TO 100: NEXT timing loop

50 LINE (X,Y)-(X1,Y1),RESET,BF turns off box

60 X=X+4:X1=X1+4 assigns new values
70 GOTO 30 program loop

37—

HAVING FUN WITH ARROWS
Using essentially the same techniques as above, we can define the
points of an arrow and make it appear to move across the screen:

X3,Y3

N
X1.Y1 X2,Y2
/

X4,Y4
THE ARROW

Program Explanation
10 CLS clears screen
20 X1=4:Y1=26:X2=27:Y2 = 26:X3 = 21:)

Y3=23:X4=21:Y4 =29 assigng valuas
30 LINE(X1,Y1)-(X2,Y2),SET
40 LINE(X3,Y3)-(X2,Y2),SET draws arrow
50 LINE(X4,Y4)-(X2,Y2),SET
60 FOR Z=1TO 100:NEXT timing loop
70 LINE (X1,Y1)-(X2,Y2),RESET
80 LINE (X3,Y3)-(X2,Y2),RESET turns off arrow

90 LINE (X4,Y4)-(X2,Y2),RESET
100 X1=X1+3:X2=X2+3:X3=X3+3:
X4=X4+3

110 GOTO 30 program loop

assigns new values

GRAPHIC S
This program will alternately fill the
described on page 29.

YMBOL

screen with the graphic symbols

Explanation
clears screen
assigns values

30 LINE (0,0)-(63,15),CHR$(1),BF fills screen

Program
10 CLS
20 FOR 1=129 TO 191
40 FOR J=1TO 100:NEXT J
50 NEXT i
CRAZY L

timing loop
loops back to 20

INES

This program creates patterns of ‘‘crazy” lines on the screen:

Program
10 FORN=1TO 10

20 CLS
30Y1=0:X1=0

40 FOR 1=1T0 30
50 X2 = RND(127):Y2 = RND(47)

60 LINE (X1,Y1):(X2,Y2),SET
70 X1=X2:Y1=Y2

80 NEXT INEXT N

Variation: To change this program to create its pattern of lines on a
white background, add line 25 LINE (0,0)-(127,47),SET,BF and change

SET to RESET in line 60.

Explanation

assigns values
(10 patterns)

clears screen

defines point (upper-left
corner of screen)

assigns values (30 lines)

defines second point as any

random point on screen
draws line

redefines first point as
second point

loops back to 10

—39—

GET @ STATEMENT

Often it is useful to save the graphics that are displayed on the screen
to reuse later on the same—or different— portion of the screen. You can
do this with GET@ and PUT@ statements. The GET@ statement "gets"
an area of graphics from the screen and saves it in an array. The PUT@
statement “puts’ a graphics array back on the screen.

The format of a GET@ statement is:
GET@ (x1,y1)-(x2,y2) [,G] ,array name
h e — —— e
Such as A# or A%, etc.

Indicates Graphic Mode
(optional)

Defines points on screen

Statement (@ must be included)

GET@ Statament

When the GET@ statement is executed, the graphics that are currently
on the screen and positioned inside the box defined by (x1,y1)-(x2,y2) are
saved into the array. For example:
10 GET@ (10,4)-(20,9),A %

saves the graphics that are in the box defined by (10,4) and (20,9) in the
array, A%. (Don't forget to dimension your arrays! For more information,
see Chapter 6 of your Radio Shack LEVEL Il BASIC Reference Manual or
page 44 of this booklet.)

The optional [,G] in a GET@ statement determines the mode of the X,Y
coordinates. If it is included, the coordinates are assumed to be
Graphics Mode coordinates (i.e. X=0 to 127, Y =0 to 47). If G is not in-
cluded, the coordinates are assumed to be in the Character Modé.

— 40—

PUT @ STATEMENT

Once you have saved the graphics in an array with a GET« statement,
you can put the array back on the screen at any location with a PUTw
statement. The format of PUT@ is:
PUT@(x1,y1)-(x2,y2) [,action] ,array name
4 s et
Such as A#, A%, etc.
indicates Graphic Mode
(can use SET, RESET or

other options...see below)

Defines points on screen

Statement (@ must be included)
PUT@ Statement

When the PUT @ statement is executed, the graphics in the named array
are put on the screen inside the box defined by (x1,y1) and (x2,y2). For
example:

10 PUT@ (15,4)-(25,9),A%
puts the graphics saved in the array, A%, on the screen inside the box
defined by (15,4)-(25,9).

If no [action] is specified, the coordinates are assumed to be in
Character Mode. When an [action] is specified, the coordinates are
assumed to be in Graphics Mode. The "action” ot a PUTw statement
may be one of the following:
SET Puts the array on the screen exactly as it was saved.
All the “on" positions are turned on, and all the “oft"
positions are turned off.
RESET Puts the complement of the array on the screen. All
the “on” positions are turned off, and all the “off"
positions are turned on.

— 41—

AND

OR

XOR

Each position in the array is “ANDed" with the cur-
rent status of that position on the screen. A position
will be turned on only if it is “‘on™ in the array and
“on" on the screen.

Each position in the array is “ORed" with its cor-
responding position on the screen. A position is
turned on if it is “‘on" in the array or if it is “‘on” on the
screen or both.

Each position in the array is “XORed" with its cor-
responding position on the screen. A position is
turned on only if its status in the array is the opposite
of its status on the screen.

These options give the PUT@ statement a great deal of flexibility. For
example, a figure can appear to blink by PUTting it on the screen with
two PUT@ statements that alternate SET and RESET, or by XORing it
with the surrounding area. By using OR, you can have two objects in-
tersect and show both objects.

42—

NOTES ON USING GET Q@ AND PUT @

Always use the same mode when you are GETting and PUTting an array.
If you GET@ an array in Character Mode, use a Character Mode PUT@ to
put it back on the screen. Otherwise, the PUT@ will produce undefined
results.

Except for animation and certain special effects like blinking, it is usual-
ly better to use Character Mode when GETting and PUTting arrays. This
Mode is faster because it moves from character position to character
position instead of from graphic block to graphic block. It is also easier
to define than Graphics Mode.

A handy procedure for GETting an array, wiping it off the screen, and
PUTting it back is as follows:

10 GET@ (X1,Y1)(X2,Y2), A%

20 LINE (X1,Y1)-(X2,Y2), " " BF

30 PUT@ (X3,Y3)-(X4,Y4),A%
Line 20 wipes out the array with biank spaces, " .

important. When using GET@ and PUT@, it is important to remember
that Character Mode and Graphics Mode simply define two ways to
divide up the screen. Any alpha-numeric characters, graphic symbols,
lines, or boxes inside the defined space can be saved with a GET@ in
either mode.

=43~

DIMENSIONING GRAPHIC ARRAYS

The array names in PUT@ and GET@ statements have to be
dimensioned with enough "array elements” to hold all the indicated
data. Otherwise, an ILLEGAL FUNCTION CALL is returned.

To determine the number of array elements in either Character Mode or
Graphic Mode, you first have to determine the number of storage bytes
required.

Once you have determined the number of bytes required, you can de-
termine the number of storage elements by the following formulas:

Type of Array Number of Elements
Integer Array (%) bytes/2
Single Precision Array (!) bytes/4
Double Precision Array (#) bytes/8

Storage Bytes. In Character Mode, each character uses a single byte for
storage. For example, to GET@ one line, 64 bytes of storage are needed.
GETting an entire screen requires 1024 bytes, or GETting an 8 by 10
character area requires 80 bytes.

In Graphics Mode, you add the total number of characters, divide by 8,
and add 2 to this to determine the number of bytes. The formula is:
Bytes = (Characters/8) + 2.

— 44—

RESHAPING AN ARRAY
The following program is an example of “reshaping an array.' We GET@
an array that is in one shape of box and PUT@ it into another shape of
box. This technique can be made to work well in Character Mode, but it
is very difficult to accomplish in Graphics Mode.
Program Explanation
10 CLS clears screen

20 PRINT@ 0, “HANG IN THERE!" start message at
Character Position 0

30 FOR Z=1TO 200:NEXT timing loop

40 DIM A%(7) dimension array

50 GET@ (0,0)-(15,0), A% GETting array and
calling it A%

60 CLS clear screen to wipe out
message

70 PUT@ (0,0)(0,15),A% PUTting array back in
different shape

80 GOTO 80 creates loop to prevent

READY prompt from
wiping out our
message (try it without
this line)

— 45—

ROCKETS
Here we have two programs that demonstrate some of the differences
between Graphics Mode and Character Mode. In the first program, the
rocket moves smoothly up the side of the screen because it is In
Graphics Mode. In the second program, we switch to Character Mode
and the movements are jerky, but much faster.

Program Explanation
10 'ROCKET IN GRAPHICS MODE remark
20 CLS clear screen

30 LINE (3,1)-(3,2), SET
40 LINE (2,3)-(4,4), SET,BF
50 LINE (1,4)(1,5), SET
60 LINE (5,4)-(5,5), SET

draws rocket

70 DIM A%(2) dimension array

80 GET@ (1,1)(5.6),G,A% GETting array

90 CLS clear screen

100 FORY=42TO 1 STEP -1 so rocket will start at

bottom of screen
and move up

110 PUT@ (1,Y)«(5,Y + 5),SET A% PUTting array on bottom

of screen
120 NEXT Y creates movement
130 CLS ' clears screen
140 GOTO 100 let's do it again, and

again, and again...

46—

The difference between Graphic Mode and Character Mode Is
somewhat like the difference between today's movies and silent pic-
tures. See if you can find where we changed the above program to put it
in Character Mode:

Program
10 ‘ROCKET IN CHARACTER MODE
20 CLS
30 LINE (3,1)-(3,2), SET
40 LINE (2,3)-(4,4), SET, BF
50 LINE (1,4)-(1,5), SET
60 LINE (5,4)-(5,5), SET
70 DIM A%(7)
80 GET@(0,0)(3,3),A%
90 CLS
100 FOR Y=12TO 1 STEP -1
110 PUT@ (0,Y)-(3,Y + 3),A%
120 NEXT Y
130 CLS
140 GOTO 100

To slow this down a bit, try adding a FOR/NEXT timing loop between
Lines 110 and 120.

Animation Hint. The program PUTs the graphic image of a rocket ship on
the screen at a specific location on the lower-left corner of the screen.
Then it creates movement by progressively PUTting it at a higher loca-
tion. But what makes the image disappear from its old location each
time it is PUT at a new location?

— 47—

The answer to this question is that the program GETs an array that i1s
bigger than the image of the rocket ship. The array that the program
GETs has a block of blank spaces beneath the rocket image. It looks
something like this:

— rocket

— empty space

Array A%

Each time the array is moved, the image at the old location is wiped out
by the empty space.

One problem with this, however, is once the rocket reaches the top of
the screen, movement stops. The image is frozen on the screen. To take
care of this, the above program clears the screen with a CLS.

In Character Mode you could wipe out the rocket image by PUTting a
second array on top of the ftrst array. This second array would contain
blank spaces ("). In Graphic Mode the solution is similar. First, you
GET a second array that is an empty space and then PUT iton top of the
first array.

— 48—

FLASHING SHIP
This program draws the image of a ship on the screen. In Graphics
Mode, it GETs the image in array A% and clears the screen. Then, it
repeatedly PUTs the image back on the screen at a different location us-
ing “XOR" as the action indicator. This technique causes the image to
flash on and off.

Program
5 CLS
10 DIM A%(50)

20 LINE (3,1)-(3,2), SET: LINE (2,3)-(4,4), SET, BF: LINE
(1,4)-(1,5), SET: LINE (5,4)-(5,5), SET

30 GET@ (1,1)-(5,6), G, A%

40 CLS

50 PUT@ (20,20)-(24,25),XOR,A%
60 FOR T=1TO 50: NEXT

70 GOTO 50

= dQ—

EXAMPLES OF ADVANCED GRAPHICS

These examples should give you an idea of some of the more advanced
possibilities of LEVEL Ill graphics. Try them out to see if you can un-
cover their techniques.

PROGRAM: FADING BOXES

10 DIM A% (600), B%(600)
20 CLS: FOR T=1TO 4: LINE (RND(127),RND(47))-(RND(127)

RND(47)),SET,B:NEXT
30 F$ =" % ":X=RND(63):IF X>32 THEN M=64 - X ELSE M =X
40 FOR 1=1TO M: GET@(1,0)-(X,15),A%:GET@ (X,0)-(62,15),B%
50 LINE (X,0)-(X + 1,15),F$,B:F$ ="' "
60 PUT@(0,0)-(X — 1,15),A%:PUT@(X + 1,0)-(63,15),B% :NEXT:

GOTO 20

PROGRAM: SAILING SHIPS

10 CLS
20 LINE (3,1)-(3,2), SET:LINE (2,3)-(4,4), SET, BF:

LINE (1,4)-(1,5), SET:LINE (5,4)-(5,5), SET
50 DIM A%(2).GET@(1,1)-(5,5),G,A%
60 CLS:DIMB%(2)
70 LINE (0,2)-(1,2), SET:LINE (2,1)«(4,3), SET, BF:

LINE (4,0)-(5,0), SET:LINE (4,4)-(5,4), SET
110 GET@ (0,0)-(5,4),G,B%
120 CLS:X =120:Y =41
130 IF Y=0OR X=0 THEN 120
140 D = RND(2):iF D=1 THEN 190
150 S = RND(15):IF X — S<0 THEN S=X
160 FOR X=X TO X-S STEP -1
170 PUT@(X,Y)-(X + 5, Y + 4),SET,B%
180 NEXT X:X =X+ 1:GOTO 130
190 S=RND(5):!IF Y -S<O THEN S=Y
200 FORY=YTO Y-S STEP -1
210 PUT@(X,Y)-(X +4.Y + 4),SET A%
220 NEXT Y:Y =Y + 1:GOTO 130

=50—

PROGRAM: LEVEL IIl BRAGS ABOUT ITSELF
5 CLEAR 300
10 READ AS
20 IF A$ ="END"” THEN RESTORE:GOTO 10
30 FORW=1TO 5:CLS

40 PRINT@470,"LEVEL 3 DOES IT!":
PRINT@470 + 64, STRING$(16,95);

50 FOR X =1 TO LEN(AS$)

60 LINE (X —1,X —1)-(64 — X,16 — X),MID$(A$,X,1),B
70 NEXT

80 FOR T=1TO 90:NEXT

90 NEXT:GOTO 10

100 DATA HEY THERE, LISTEN, EVER SEEN, A BETTER,
BASIC, NO WAY ONLY

PROGRAM: RADAR SCREEN

10 FORR=15TO 1 STEP —1
20 CLS

30 FOR Y =0 TO 47 STEP 47
40 FOR X =0 TO 127 STEP R
50 LINE (64,24)-(X,Y),SET

60 NEXT X,Y

70 FOR X =0 TO 127 STEP 127
80 FOR Y =0 TO 47 STEP R
90 LINE (64,24)(X,Y),SET

100 NEXT Y,X

110 NEXT R

—51—

USING LEVEL Ill BASIC

SECTION THREE: STRINGS,
USER DEFINED FUNCTIONS, AND
MACHINE LANGUAGE SUBROUTINES

INCLUDING:
* NEW MIDS CAPABILITY
* SEARCHING STRINGS WITH INSTR
* DEFINE YOUR OWN FUNCTIONS
* MACHINE LANGUAGE USER ROUTINES

This section contains a number of “miscellaneous’ features of LEVEL
Ill, some of which you are sure to appreciate. If you've had any ex-
perience using string functions you'll find LEVEL IlI's MID$ and INSTR
very useful. Defining your own functions is, well, shouldn’t everybody?

=BT

NEW MID$ CAPABILITY

In Level Il Basic, the MID$ function is used to return a substring of a
given string. The example program in your Level || Manual (see page 5/6)
returns the “exchange” or first three numbers of a phone number.

In LEVEL Il BASIC, MID$ can be used on the left side of an assignment
statement as well as the right side. This allows you to use MID$ to
replace a portion of one string with another string.

The format of MID$ on the left side of an equation is:
MID$ (string1.n [,m]) = string2
/'y A

Replacement string.

Whole number (optional).
See below.

Whole number. Position
where replacement begins.

Such as A%

String function

MID$
The characters in string1, beginning at position n, are replaced by the
characters in string2. The m is optional; it refers to the number of
characters from string2 that will be used in the replacement. If m is
omitted, all of string2 will be used.

— 54—

For example, the following program replaces the MO in “KANSAS CITY,
MO" with a KS:

10 A$ = “KANSAS CITY, MO"
20 MID$(A$, 14) = "KS"

30 PRINT A$

RUN

KANSAS CITY, KS

When using this function, you should be aware that MID$ literally
replaces characters in stringl with characters in string2. Therefore, the
replacement of characters will never go beyond the original length of
string1. You cannot replace the MO in A$ above with KANSAS. The result
would be KANSAS CITY, KA!

For the sake of further illustration, suppose that you wanted to replace
the spelling J-O-H-N with J-O-N.The following program might seem to be
appropriate:

10 A$ ="JOHN"

20 MID$(A$,3)="N"

30 PRINT A$

but the result is JONN. This can be corrected simply by adding a space
in string2 of line 20: 20 MID$(A$,3) = “N "". Now JOHN will become JON.

— 55—

THE INSTR FUNCTION

This is a new string function not found in Level Il Basic. It allows you to
search a string for a specified substring. The format of INSTR is:

IN?;FR ([n,] string1, string2)
Such as B$
Such as A$
Number designating

starting position
of search (optional).

Function
INSTR

INSTR searches string1 for a substring that matches string2. When a
match is found, INSTR returns the starting position of the match. The n
is optional. It designates the starting position of the search. If n is omit-
ted, the search starts with the first character in string1.

If no match is found, or if n is greater than the length of string?, or if
string1 is null, INSTR returns a zero (0).

Example. The 1ollowin'g example shows INSTR being used with and
without the optional n. It searches the string “ABCDEABCDE" for the
substring “BC"

Program Explanation

10 A$ = "ABCDEABCDE"

20 B$ ="BC"

30 PRINT INSTR (A$,B%) Without n

40 PRINT INSTR (3,A%,B%) With n

RUN

2 Result of line 30
7 Result of line 40

— 56—

Note that once a substring is found the search is discontinued. INSTR
does not continue searching for additional substrings.

Important: The INSTR function eliminates the need for using “instring

subroutines’ as described on page 5/9 of your Radio Shack Level Il
BASIC Reference Manual. INSTR provides the same capability; it 1s
much easier and faster to use.

57—

DEFINING YOUR OWN FUNCTIONS

Often a program will contain a particular operation or function that

repeated several times. By using the DEF FN statement you can defir
your own functions and save both time and memory. Instead of writir
out the entire formula each time it is used, you only need to do a “‘fun
tion call’’

DEF FN. This statement is used to name and define user functions. Tt
format of the statement is:

DEF FNvariable (parameter list) = function definition
What the function does

Variable names such as D, A, etc.,
that are to be replaced when
function is called

Statement with variable
to name function

The variable name, which is any legal variable name, is tacked on to DE
FN to become the name of the function. An example would be: DEF FN

The parameter list is one or more variables or string variables separati
by commas and enclosed in parentheses. These variables are variabl
you want to replace when the function is called. Seems a bit coi
plicated, but the exampies that follow should help clarify it for you.

The function definition is an expression that performs the necessa
operation. It could be something like: A/4 + E % 25. Variable names th
appear in the function definition do not affect other program variabl
that happen to have the same variable names.

—58—

Example. In the following example, a function is defined that adds the
second power of one number to the third power of another.

10 DEF FNA (D,E) = Dt2 + E3

20A=1B=2

30 PRINT FNA (A,B),FNA(2,3),FNA(4,3),FNA(5,2)
" RUN

9 31 43 a3

We defined a function called DEF FNA that adds the second power of D
to the third power of E. Since we want to be able to change the values of
D and E, they are included in the parameter list.

The DEF FN statement can also define a string function, as in this
example:

Program
5 CLEAR 500 just so we’ll have ample string space
10 DEF FNST$(A$,B$)=A$+", " +BS
20 INPUT “STATE";ST$
30 INPUT “CITY";,CT$
40 F$ = FNST$(CT$,ST$)
50 PRINT F$
RUN
STATE? NEBRASKA
CITY? ALLIANCE
ALLIANCE, NEBRASKA

NOTE: The variable name in the second example ends with a dollar
sign($). Function name variable, like other kinds of variables, must in-
dicate the type of value that is to be returned. Thus a function name
variable may end with a $ (string), # (double precision), %(integer), or !
(single precision). The default is single precision (!).

—59—

MACHINE LANGUAGE USER ROUTINES

In LEVEL 11l BASIC, the USR function has been expanded so that 10 dif-
ferent machine language user routines can exist in memory at the same
time. As with Level Il Basic, the routines may be assembled with the
TRS-80 Editor/Assembler and loaded with the SYSTEM command. Or,
they can be POKEd into memory. It is no longer necessary to POKE the
starting address of a user routine into memory. The DEFUSR statement
is provided for this purpose.

USR Function. The new format for this function is:
USR[n](argument)
Value to be passed to user routine
0 to 9 (optional)

Function
USR

The optional [n] is a number from 0 to 9. It is used to label the different
machine language user routines. If it is not included, the ‘0" is assumed
making the function the same as USRO.

DEFUSR Statement. This statement tells BASIC what the starting ad-
dress of a routine is. The fbrmat of DEFUSR is:

DEFUSR[n] = address
Where routine is located
0 to 9 (optional)

Statement
DEFUSR

The nis a number from 0 to 9 that should correspond with the number of
the user routine. If it is omitted, it is assumed to be a 0.

—60—

Example. A user routine called USR3 has been POKEQ into memory
beginning at address 28000. Before calling the user routine. the program
must execute the statement:

DEFUSR3 = 28000
A calling statement for this routine might look like this

A = USR3(B)
If a user routine is called betore the corresponding DEFUSR statement
has been executed, an ILLEGAL FUNCTION CALL error results.

Itis still possible to POKE the starting address of USRO into memory, as
described in Chapter 8 of your Radio Shack LEVEL Il BASIC Reference
Manual.

—61—

* THE LINE INPUT STATEMENT

* INPUT#LEN AND LINE INPUTHLEN

* NEW LOAD AND SAVE COMMANDS
* TURNING OFF THE SYSTEM CLOCK*
* OUTPUT TO RS-232 PORT**

The 110 features described in this section include two powerful addi-
tions to Level Il Basic's INPUT statement, and a much improved way to
load and save cassette tapes.

The INPUT features allow you to enter INPUT with commas or other
punctuation without enclosing the whole input in quotation marks. You
can also put a time limit on inputs, which adds a whole new dimension
to game programs and educational programs.

By using the new LOAD and SAVE commands to replace Level Il's
CLOAD and CSAVE commands, you eliminate much of the agony of
loading and saving programs on tape.

“Output to RS-232 Port” and "Turning Off the System Clock'' are two
things you don't have to even think about unless you have an Expansion
Box as part of your TRS-80 System. They do, however, demonstrate some
of the foresight of LEVEL Ill BASIC.

* Requires TRS-80 Expansion Box
* *Requires RS-232 Port
—63—

THE LINE INPUT STATEMENT

The LINE INPUT statement functions much like INPUT except that it has
some dadded capability. The format of this statement is:

LINE INPUT [“prompt string'’;] string variable name
such as A$, BS, etc.
such as CITY or NAME (optional)
Statement
LINE INPUT

As you can see from the format, LINE INPUT is frequently used for input
ting string literals. Unlike INPUT, this statement will assign a string
variable name to the entire line of input. Every character typed up t«
will be part of the string. This includes commas, colons
quotes, or leading spaces.

Another aspect of LINE INPUT is that it doesn't automatically print :
question mark (?) when it is executed, as do INPUT statements. If you
want a question mark, you simply make it a part of the prompt string
such as “CITY?".

Example. When the following LINE INPUT statement is executed, i
displays CITY, STATE: as the prompt string. You can then enter :
response that includes a comma such as ALLIANCE, NEBRASKA. You
response will be assigned to the string literal, CS$.

10 LINE INPUT “CITY,STATE: ";CS$

20 PRINT CS$

RUN

CITY, STATE: ALLIANCE, NEBRASKA

ALLIANCE, NEBRASKA

— 64—

INPUTiLEN AND LINE INPUTHLEN

By adding #LEN to an INPUT or LINE INPUT statement, you can impose
a limit on the length of time allowed for a response to the INPUT prompt.
And you don't need an Expansion Box because the timing is done with
software. The format of this is:

[LINE] INPUT#LEN n,m;["prompt string’;Jvariable name(s)

n is seconds,
m is line number to branch to
if time limit is exceeded

no space after INPUT*

The *n'" is the time limit in seconds. You can use up to 8000 seconds,
which is 2 hours, 13 minutes and 20 seconds! The *m" is the line number
you want the program to go to if the time fimit is exceeded . It could
branch to a PRINT statement that says something like, “SORRY,
DUMMY, YOU BLEW IT!!!"

Other than tacking #LEN on INPUT and adding n and m, this statement
works the same as any other INPUT or LINE INPUT statements.

Example. This program selects random addition problems and gives you
just four seconds to answer.

Program
5S=4
10 X = RND(100)
20 Y = RND(100)
30 PRINT X;" + ;Y =",
40 INPUTH#LEN S,100;Q
50 IF Q=X+ Y THEN PRINT "SMART" ELSE PRINT "DUMB"
60 GOTO 10
100 PRINT “SLOW!"
110 GOTO 10

=B85

NEW LOAD AND SAVE COMMANDS

In Level Il Basic, the CLOAD and CSAVE commands are not always
reliable because they depend on an exact volume setting on the tape
recorder. LEVEL Il BASIC replaces these commands with new com
mands to eliminate the problem. Use LOAD and SAVE exactly as yot
used CLOAD and CSAVE.

LOAD may be used to load a tape that was previously saved with a Leve
Il Basic CSAVE command. Likewise, a tape that is SAVEd in LEVEL |l
BASIC may be subsequently CLOADed in Level Il Basic, but the volume
setting will again become critical.

LOAD and SAVE commands can be aborted with the [BREAK] key. Jus!
remember that when |BREAK] is used during a SAVE the partial tape
[BREAK]

will be of no use. When|BREAK|is used during a LOAD you will have
LOADed part of the program in your Ram memory. Type NEW before yot
try entering anything else.

LOAD? can be used to compare a program stored on cassette with one
presently in the computer's memory. This is the same as the Level I
Basic CLOAD? command.

— 66—

TURNING OFF THE SYSTEM CLOCK "

If your system includes an Expansion Box, the system clock is “on"
while LEVEL Il BASIC is running. Tape operations are vulnerable to in-
terruptions from the system clock. Therefore, the clock should be turned
off before a SYSTEM, INPUT# - 1, or PRINT# — 1 command and turned
back on afterward. (Don’'t worry about LOAD and SAVE—they turn the
clock off and on automatically.)

The command that turns the clock off is CMD*T" and the command that
turns it back on is CMD"R!’ These commands may also be used as pro-
gram statements.

Exampie. Here we turn the clock off, read values from tape, and turn the
clock back on.

100 CMD"'T"

120 INPUT# - 1,X,Y,Z

130 CMD“R"

“For use with TRS-80 System that includes an Expansion Box

—67—

OUTPUT TO RS-232 PORT* *

To output to an RS-232 port, LEVEL Il provides a PRINT# — 3 statement,
which is used just like the PRINT statement. The format of this state-
ment is:

PRINT# - 3, list of items

Any of the things that
can follow a PRINT statement

Statement

PRINT#-3

This makes it easy to output to a line-printer or any other device you
hook up to the RS-232 port. Input from the RS-232 port still requires the
use of machine language routines.

The first character sent by BASIC to the RS-232 port causes the
RS-232's UART to initialize using the switches set on the RS-232. In
order to override this default initialization, send a dummy character to
the RS-232 port and then re-initialize using a machine language
subroutine.

* *Requires RS 270 (o

— 68—

INDEX TO STATEMENTS, COMMANDS,
AND FUNCTIONS

CHRS: . oo s 555 0 5o 557 55 4 mitusinion o 6 o m ortmreratans s 5 5 ¢ £ 2 o0 29, 34
CMDMBRY. | ¢, i gmmmieas o5 0 e emtosmimunn oo s o 5 wevsrmisses s s 5 3 55 § o E5550800 23-24, 67
CMD T 67
DEF FN. ..o 58-59
DEFUSR . ..ottt e e e n i e e et s s e 60-61
GET@.o 40,43-44
INPUTHEEN. ., coininio s o555 55 smmimmonsron n n m o s roresarenscs s o 5 5 5 a0 sipigssiors < £ 65
INSTR. 56-57
LINE. 33-35, 36
LINE INPUT, . .o ciiciiniisiisnn s mmminmio oo o s s s srssiars 5o o0 o s mmaiicn 5 5 5 s 5 4 64
LINEINPUTHLEN. 65
LOAD. .. 66
LOADY. . 66
LOET. oo c st samnines vs 56 55 sorsinmmns e v n s o wmmmsemin o o o v u o wimrssassiaras s s 64 6 16-17
LSET LIST . 14
LSETRESET.o i 17
LSBT SET.ciciniv s 5 555 355550000 wn v n s o emiomesnin m s v v 5 o s mverstorsresn s 8 5 555 6 stekia 17
MIDS. . 24, 54.55
NAME ciciumisss s s 4 pooie BEGNE05 £ 5 5 5 53088005555 o 1 o ns eciiorerareis om 5 4 4 4 5 3 18
PRINTED. . ..o cimainin s an e memornne s ot samions sn s o o s 5 s sises 5 68
PUT@. ... 41-44
SAVE ...ococ st vsmaaa s s 5555 0% 5 aSssininn an s o s eiormre e 65 e 55 4 5 o pema 66
TIMES . 23
USR. 60-61

ANImation. 37, 47-48
ATTAYS . 44-45
BREAK KBY. . ..o iiuciiivis i se550tmnnnnnennomoonesanenne oo 26. 66
Bunnell, David. ... 4
Cassette Modification............... 1"
CharacterMode. 28-31, 33, 43-44, 46-47
Character POSItions. 28-31
CHRS. 29, 34
OMD R, i s 65 555 55005605 5 555 5505t o 5 5 ous Mrotoremen o » o 5 s = soms 23-24, 67
M D T i 5 5 555 5 aummimim v o v w s wimreicmim o o o oe o someiiarsio 5 o 8 & @ o sisiisiatars s & o s & = 67
Defining Functions.......... i, 58-59
DEF FlN: i iicos cummonsvnnnsnmmeimom s sensomimisiome s oo s o e miararasas oo o s 58-59
DEFUSR.............. L 60-61
Digital Clock-Calendar.cocvveuiniieiiiinisniioeseasnesns 24
Diminsioning Graphic Arrays.ouuiiieiiaenn.. 44
Disk BASIC. 8-9
Error MESSAGOS. ..« v commmnrssssssummenssisssvesmnssssisesssisimis 22
Format Notation. 12
Gates, Bill. 3
GET@. ... 40, 43-44

—70—

iraphics:

Animation. ... 37, 47-48
BUNKING ODIBCES. . . .« s vcvmisvasisssnianmosion:svesensisimumsssse 42, 49
CharacterMode. 28-31, 33, 43-44, 46-47
Cloaring Graphies! - s« cvwmsseisessnssmummenssass 35, 43, 47-48
Dimensioning Arrays..... i 44
Erasingaline......... 36
Examples. 37-39, 45-51
GET@ Statement .c..icv:susmmnmrnsissnsss vmoinmsissssssi s 40, 43-44
GraphicsMode., 32, 43-44, 46-47
Graphic Symbols.l S 28-30, 39
ITOAUEHION £0: 00w s v s v susmumussnressssummmaesasess s PueEmEessss 27
LINE Statement.coucovmonroes-sssosonerisissssss 33-36
PUT@ Statement........... 41-44
Reshaping AN AFFAY. ... :::ceummnssssessimemsesssssssssae@msssses 45
HADIIC BIOOKS: <..cocovv v 25 5 55 5 smumas ¥ 85556 amsioms s 655548 6 s 28-29, 32
iraphics Mode. 32, 43-44, 46-47
Iraphic SYMDOIS. . .coenuisicssumssumnssnssssassaueninsssss 28-30, 39
fexidecimal NUMDErS. i 25
atializing TRS-B0. .« .uciasasmmmarcssssesaummnssisssisssnsvianssssis 6
O Features. 63-68
NPUTHLEN. ... 65
MSTRL cvirosissnions: 4 63 5 5 6 6 WEEmsE 5 £ 55 & 3 6 1§ SEGIIEE 53 ¥ 5 § 5 8 WIS 552 45 § 56-57
IString SUbroutines. i 57
astruction Booklet. ... 4
OWIS, ANAYOR: . coiicssssoncvmsmvomesssssss osmsondsesssssmaimEssssis 4

LINE(Character MOde).cuuaisisinsineiamnnesssessssassesssss 33-35

LINE (Graphics Mode.ot 36
LINE INPUT. e 64
LINE INPUTHLEN. ... e 65
LOAD. . . cvrvmcnncns o s smaamimnn as s 555 o @i 5557 55 5 aniome b oo o s s ammis 66
LOADD. . i cssicis 655 55 5 55 4 amusmsrnom s 00 2 woatmimioimis v s o« scormiosareiato o o o 5 45 s atscms 66
Loading LEVEL 111:66

CaSSBIOFNG. . . . vwuninassssssinsmmedn 185550085 oy s e mmmeoemoes 7

DUBK Pl cicvsoisiis 555 55550050 0s a0 o0 minimmeisios o s o o sisemienmmions oo s 8-9

Problems. 10-11
Lockout Recovery............ it 26
LSBT i v s s vvmmmmins s e s o b W amisrms o5 5 5 55 0b i 5 55 5 5o msoseronore o s o s 16-17
LBET LIS .o i s maitinsmn uneommmmeonions o ns smmmmmsin s s s s ommesmmmn s s 14
LSET RESET. .. . 17
LSET SET. ciusuususmmmmmnisses smamsmas 355555505000 o s s o o mmormmmsmsne 17
Machine Language User Routines............................... 60-61
Memory Requirement............. o 1
MIICTOSOIL. . : i o imioisnss 75 55 5.00mamed o 5 duorommisiorsinn o 2 o o o missosaiossistors o s o 3,7
MIDS. . 24, 54-55
NAME.... ... coommmmings s voommons 54 s s oo smmmms = 3 5 S HGHEAHRE § § 5 § 265 18
Octal Numbers. 25
POINT L 32
PRINT@ ccconiss vv s smpmmines s 6 5 bamiamns £ 5 5 5 5AGEIHEEHT § § 3 556 bammses 30
PRINTH 3 e 68

