PERCOM |

5560}

Disk Operating System ;
SYSTEMS MANUAL

PERCOM DATA COMPANY
211 N.KIRBY
GARLAND, TEXAS 75042

Cat X-3555

PERCOM MICRODOS
VERSION 1
August 24, 1979

Created by
James W. Stutsman

Copyright (C) 1979
by
PERCOM DATA COMPANY
211 North Kirby
Garland, Texas 75042
(214) 272-3421

All rights reserved

PERCOM MICRODOS

IMPORTANT NOTICE

All of the material in this manual is copyrighted by PERCOM DATA
COMPANY. No portion of it may be copied in any manner without
the written permission of PERCOM DATA COMPANY. PERCOM does not
guarantee this software 1in any way and shall not be liable for
any damages resulting from its use. Throughout this manual
references will be made to TRS-80 (tm) and TRSDOS (tm). These
are trademarks of Tandy Corporation, Fort Worth, Texas, which has
no affiliation with Percom Data Company. MICRODOS is a trademark
of PERCOM DATA COMPANY.

At several places within this manual references are made to the
"TRSDOS & DISK BASIC Reference Manual" published by Radio Shack.
This manual 1is available from Radio Shack (catalog number
26-2104).

WARNING

It 1is assumed that the reader of this manual is experienced in
the use of Radio Shack Level II BASIC (tm). If this is not the
case steps should be taken to master Level II before continuing
in this manual, as it assumes such knowledge as a prerequisite
for using MICRODOS.

A great deal of time and effort has gone into the creation of
PERCOM MICRODOS. 1In spite of this it is still possible that this
software may contain some "bugs". If you should discover a
problem with MICRODOS, please let us know about it. The best way
is to send us a letter describing all of the factors present when
the error occured. Be sure to include all information necessary
to recreate the problem, as it 1is wvery difficult to solve a
problem that cannot be recreated. It is best NOT to phone us
about a software problem. There is no guarantee that someone
familiar with the program will be available when you call,
delaying the solution. It is also very difficult to describe
software problems over the phone, and even more difficult to
solve them that way.

READ THIS FIRST

Disk files created by MICRODOS are NOT compatible with TRSDOS or
other disk operating systems. Attempts to read MICRODOS
compatible disk files or programs with TRSDOS will fail.

While a utility program exists for MICRODOS to read TRSDOS BASIC
program files, the syntax of disk I/0 statements in TRSDOS BASIC
may not be correct for MICRODOS. It will be necessary to modify
such programs to be compatible with the MICRODOS BASIC syntax.

You may also transfer programs from one system to the other by
saving the program to cassette while under one DOS then loading
the program from cassette while under the other DOS.

MICRODOS 1is configured for the disk drives sold by Percom Data
Co. The Percom disk drives permit operation on 40 tracks with a
track to track step time of 20 milliseconds. If you are not
using MICRODOS with a Percom disk drive it may be necessary ¢to
alter these parameters.

Disk drives sold by Radio Shack are capable of only 35 tracks of
storage and will not step faster than 40 milliseconds. If you
are using MICRODOS on a system which contains one or more Radio

Shack disk drives you must apply the following patches for proper
operation.

1. Load MICRODOS and exit to BASIC.

2. To change the number of available tracks to 35, enter the
following:

POKE 17554,35 : CMD"M",0

This will set the track 1limit to 35 and will write the
modified MICRODOS to drive #0.

3. To change the track to track step time to 40 milliseconds,
enter the following:

POKE 17556,3 : CMD"M",0

This changes the step time and writes the modified MICRODOS
to drive #0.

- iii -

PERCOM MICRODOS

I. GETTING STARTED

Buying a new software item is like buying most new things --
there is a tremendous urge to try it out right away before
reading instructions or anything else. If you want to use
MICRODOS "instantly" by all means do so. The diskette provided
contains several sample programs to play with. PLEASE DO NOT
REMOVE THE WRITE PROTECT TAB FROM THIS DISKETTE! It is there for
your protection to prevent inadvertent destruction of data on the
diskette you purchased. Play with MICRODOS, experiment, and
enjoy it. When vyou are ready to learn more about it return to
this document. The MICRODOS PRIMER at the end of this manual
contains a quick summary of the MICRODOS commands.

II. MICRODOS OVERVIEW

A Disk Operating System (DOS) is, loosly speaking, one or
more programs which provide access to a magnetic disk storage
device. Typically these programs are large and complex and place
many restrictions on the programmer. Data to be stored on disk
must be organized in "files" which must be "opened" to be used

and "closed" when no longer needed. Such restrictions are a
necessity on large computer systems to maintain efficient,
orderly usage. Traditionally microcomputer Disk Operating

Systems have been designed as replications of big computer
systems, taking a heavy toll on the limited resources of the much
smaller machine.

The philosophy at Percom is that a DOS for a microcomputer
should make minimal demands on available resources while
providing essential functions in accessing the disk. These
functions include program save and load and a simple means of
storing and retrieving data. Random access of the disk should be
as easy to perform as sequential access.

MICRODOS was designed around these principles. Its
requirements are small -- less than 7K of memory and only 5% of a
diskette. Once MICRODOS has been loaded into memory (by power-on
or reset) it 1is no longer dependent on the disk for anything.
This, along with the low memory requirement, makes a 16K one-disk
system quite useful.

PERCOM MICRODOS

III. DISK ORGANIZATION

Up to four disk drives may be accessed under MICRODOS.
These drives are referenced using numbers from 0 through 3. The
cable position for drive 0 will be either the connector closest
to the Expansion Interface or that furthest away from the
Expansion Interface. Which one you have depends on the
manufacturer of your cable. On cables made by Percom Data
Company position 0 is the furthest from the Expansion Interface.

Data is recorded on a diskette by creating patterns of
magnetization in the ferromagnetic material on the surface of the
diskette. The read/write head of the disk drive is capable of
moving across the surface of the diskette to discrete positions
called "tracks". A disk drive may be capable of reaching 35, 40,
or even 77 tracks depending on the model used. These tracks may
be thought of in the same context as grooves on a phonograph
record. Data within a track 1is stored in segments called
"sectors". Under MICRODOS the unit of disk storage is one sector.

Sectors on a disk are accessed by number. The first sector
on the first track is number 0, while the number of the last
sector on the last track will depend on what model of disk drive
is being used. Numbering of sectors on a diskette is similar to
the numbering of elements of an array in BASIC.

Accessing a sector on disk, however, requires more than just
the sector number. As mentioned previously it is possible to
have as many as four disk drives. Therefore a drive number must
also be provided for accessing a sector. In accessing a sector
under MICRODOS the drive number and the sector number are
combined in a single 5-digit number of the form DSSSS. The first
digit, D, represents the drive number and may range from 0 to 3.
The last four digits, SSSS, are the desired sector number. Range
of the sector number is dependent on the type of drive being
used. Following are some examples of the DSSSS coding:

10010 will access sector 10 of drive 1.
20349 will access sector 349 of drive 2.
00020 will access sector 20 of drive 0.

20 will also access sector 20 of drive 0.

Note that leading zeroces are not required in a DSSSS number. Due
to this fact sectors on drive 0 may be accessed using a sector
number alone, although there is no harm in also specifying a
drive number too. Note also that if a drive number is specified
leading zeroes are required on the sector number.

When writing programs to run under MICRODOS the DSSSS number
may be specified in several ways. It may be specified as an
actual number as shown above, although this is very limiting.
MUCH MORE USEFUL is the ABILITY TO SPECIFY 'DSSS' as a VARIABLE
or a FUNCTION in a BASIC program. When a variable is used it is
first converted to an integer value (if not already an integer).
Arithmetic expressions may also be used for DSSSS as long as the
result is a positive, legal value.

PERCOM MICRODOS

Some examples of DSSSS expressions are:

DS a simple variable.
D*10000+S an expression.
LOC (1) a function.

However the DSSSS number is specified it must never be negative.
The drive number may not be larger than 3 and the sector number
must not exceed the largest possible value for the disk in use.

IV. THE MICRODOS OPERATING SYSTEM

Before 1learning to use MICRODOS it is necessary to learn a
little bit about it. MICRODOS 1is a machine-language program
which resides in 1less than 7K of RAM memory. The purpose of
MICRODOS is to provide the BASIC programmer with the necessary
tools to use a mini disk drive for data storage and retrieval.
Unlike other Disk Operating Systems, MICRODOS exists in
conjunction with Level 1II BASIC, not apart from it. When the
computer is first turned on (or the RESET button is pushed) the
Level II ROM 1loads MICRODOS from the disk on drive 0. After
performing some initialization MICRODOS turns control over to
Level 1II. It is important to understand that from that point on
all communication with MICRODOS is done through the use of BASIC
instructions.

MICRODOS is recorded on sectors 0 to 19 of any disk that it
is written on (this procedure is described later). Once MICRODOS
has been loaded (by power-up or reset) it 1is not necessary to
keep the MICRODOS disk mounted. MICRODOS resides entirely in
memory, thus it does not need to have a "system" disk available
as with other Disk Operating Systems such as TRSDOS.

V. THE MICRODOS COMMANDS

For some functions it 1is necessary to 1issue commands
directly to MICRODOS. This is done using the command 'CMD'. The
various forms of this command are discussed in the following
paragraphs.

CMD"F",D

Before a new diskette can be used by MICRODOS it must have
certain control and timing 1information written on it. The
process of writing this data to a new diskette 1is «called
"formatting". This MICRODOS command performs the formatting
operation on a diskette. 'D' is an expression indicating the
drive number of the disk to be formatted, and must be in the
range 0 to 3. When 'CMD"F"' is issued the entire diskette is
written with the necessary control information. A second pass is
then made to verify that every sector can be read. If a read
error 1is encountered during verification the track on which the
error occured will be reformatted in an attempt to correct the
error. If the sector still cannot be read MICRODOS counts it and

PERCOM MICRODOS

goes on. At the conclusion of the 'CMD"F"' the function LOC(3)
will return the number of sectors that could not be verified with
zero indicating no failures. Following a 'CMD"F"' all sectors of
the disk will be initialized to an "empty" state. This means
that reading of any sector of a newly formatted disk will return
no data. An important point to note is that THE FORMAT PROCESS
IS INHERENTLY DESTRUCTIVE and will overwrite any data present on
the disk to be formatted. Users must make absolutely sure that
no vital information will be lost before starting 'CMD"F"'.

CMD"M",D

Since MICRODOS must be on a diskette to be 1loaded into
memory, there must be a way to get it from memory back onto a
diskette. This is done by issuing 'CMD"M",D' where 'D' is an
expression 1indicating the drive which contains the diskette that
MICRODOS is to be written on. The diskette must be formatted.
MICRODOS will be written on sectors 0 to 19 of the indicated
disk. Prior to issuing this command it should be verified that no
important information 1is on these sectors. Because MICRODOS
resides on sectors 0 to 19, prudent programmers should not use
any sector below 20 on any disk that might contain MICRODOS.

CMD"I",D

This command 1is simply a shortcut. It first performs
'CMD"F",D' and then 'CMD"M",D'. As before 'D' is an expression
for the drive to be operated on and must be between 0 and 3.

CMD"H",AS

When a power-on or reset is done a "bootstrap" program is
loaded which clears the Video Display and 1loads the MICRODOS
software. The loading procedure takes several seconds. It is
often desirable to have something displayed on the screen so that
the user of the computer has verification that the computer is
"doing something®". By using 'CMD"H",A$' a message of up to 128
characters may be displayed every time MICRODOS is loaded. 'AS'
is a string expression which contains the message to be
displayed. If more than one line is necessary the "down-arrow"
key is used to end each line. The following example will set up
a three-line commercial message to be displayed at every loading
of MICRODOS:

CMD"H" ,"PERCOM MICRODOS <down arrow>
BEST DOS AVAILABLE FOR THE TRS-80 <down arrow>
BUY YOUR COPY TODAY!" <enter>

It is very important to note that this command effects the copy
of MICRODOS in memory ONLY. Therefore to make the command work
it is necessary to ALWAYS FOLLOW 'CMD"H"' WITH 'CMD"M"'. This is
the only way to get the modified DOS on disk.

PERCOM MICRODOS

CMD"K",D

When the computer is powered on or reset it loads MICRODOS
and then asks "MEMORY SIZE?". This can create confusion for an
inexperienced operator and can lead to errors. Worse, to use the
computer the operator must know enough programming to get at
least the first program 1loaded and running. To solve this
problem MICRODOS allows up to 128 characters to be "pre-entered"
and stored 1in the DOS for use at start up time. This is done
using 'CMD"K",A$' where 'AS' is a string expression containing
the characters to be "auto-typed" at power up. Since the "ENTER"
key cannot be embedded in a string the "down-arrow" key is used
instead. At power-up the "down-arrow" is converted to "ENTER".
In the following example the DOS is set up to answer the memory
size with 47245, load a menu program, and RUN it:

CMD"K" ,"47245 <down arrow>
LOAD 30,R <down arrow> <enter>

As with 'CMD"H"' this command affects only MICRODOS as it resides
in memory. Therefore it is ALWAYS necessary to use 'CMD"M"' to
make the auto-key function work.

VI. PROGRAM MANIPULATION COMMANDS

MICRODOS allows BASIC programs to be saved on diskette and
loaded into memory as needed. The commands necessary to do this
are described in this section. Note that programs saved by
MICRODOS are saved in a "memory-image" form, i.e. the program on
disk looks exactly like it did in memory. Therefore it 1is not
possible to read programs from disk as data and print them.

LOAD DSSSS or LOAD DSSSS,R

The 'LOAD' command loads a program beginning at the sector
designated by the DSSSS expression. If ',R' follows the command
the program is RUN as soon as it is loaded. Should an attempt be
made to load a program which is larger than available memory, an
'OUT OF MEMORY' error will occur. In that event no part of the
program will be loaded. The 'LOAD' command performs an internal
NEW so no part of a program in memory will remain when 'LOAD' is
performed. Note that since the string space reserved by CLEAR is
not affected by NEW, it may be necessary to CLEAR a smaller
string space to 'LOAD' a large program.

SAVE DSsSsSs

The 'SAVE' command is used to save programs from memory to
disk. 'DSSSS' 1is an expression indicating the drive and first
sector to be wused in saving the program. It is the

responsibility of the user to insure that the sectors written
over by the 'SAVE' are unused. No check is made during the save.
At the conclusion of the save the command displays the last
sector used. This should be noted to prevent overwriting the

program in future disk access.

MERGE DSSSS

The 'MERGE' command works 1like the LOAD command with one
important exception. There is no implied NEW prior to 'MERGE'
and any program in memory is NOT cleared out. Lines from the
incoming program are merged in with those of the program in
memory. In cases where a line from disk is already in memory, the
disk line will replace the one in memory. If memory is exhausted
before the 'MERGE' 1is complete an 'OUT OF MEMORY' error will

occur and memory will contain as much of the program as would
fit.

VII. DISK INPUT/OUTPUT STATEMENTS

Under MICRODOS each disk sector has the capacity for 255
characters (bytes) of data. Data is passed back and forth from
the disk using strings, which also have a 255 character capacity.
Therefore, for a data item to be recorded on disk, IT MUST FIRST
BE CONVERTED INTO STRING FORM. Only two statements are needed to
store and retrieve data to and from disk. They allow for simple
management of data on disk. In the next section more complex and
powerful techniques are discussed.

PUT A$,DSSSS

Data is put on the disk using the 'PUT' statement. The data
to be output must be in a string variable ('A$' above) and a
'DSSSS' expression must be given to indicate where on the disk
the data is to be put. The following example shows how the word
'"HELLO' could be put on sector 50 of the disk in drive O0:

100 AS="HELLO" 'LOAD THE DATA INTO A STRING
200 PUT AS,50 'OUTPUT TO DRIVE 0, SECTOR 50

Numeric data must be converted to string form before being put on
the disk. In this example the number 3.141592653 (the constant
Pi) is put on sector 24 of the disk on drive 2:

100 PIS=STR$(3.141592653) 'CONVERT NUMBER TO STRING
200 PUT PIS$,20024 'PUT TO DRIVE 2, SECTOR 24

While experienced programmers may shudder at the lack of
efficiency in these methods, their purpose is to show clearly and
simply how data may be recorded on disk.

GET AS$,DSSSS

To retrieve strings from disk the 'GET' statement 1is used.
Data is read from the sector identified by the 'DSSSS' expression
and transfered into string variable 'AS$'. The prior contents of
'A$', if any, 1is 1lost. In the following example sector 50 of

PERCOM MICRODOS

drive 0 is read and the result displayed. Sample output is also
shown.

100 GET AS,50 'READ SECTOR 50, DRIVE 0
110 PRINT LEN(AS);AS 'DISPLAY RESULTS
5 HELLO (Sample output)

Note that the LEN function may be used to determine the actual
number of characters read.

Numeric data may also be read, but since it was recorded as
string data it must be read back as string data. The following
example reads the value of the constant Pi from sector 24 of
drive 2:

100 GET A$,20024 'READ THE STRING

110 PI=VAL (AS) 'CONVERT TO NUMBER
120 PRINT AS$;PI 'DISPLAY RESULT
3.14159 3.14159 (Sample output)

The 1loss of digits from the PUT example is caused by the use of
single precision variables.

VIII. FIELD BUFFERS

The techniques previously discussed for data storage and
retrieval are simple to use and moderately efficient for storage
of text. However, they are very inefficient for storage of
numeric information. MICRODOS offers another method which, while

more complex, offers much more efficient use of the disk. In
this method data is read and written using "Field Buffers" which
are special holding areas in memory. MICRODOS ©provides four

Field Buffers which may be defined by the user. Data fields may
be defined within these buffers for easier manipulation by the
BASIC program. How these buffers are used is best shown with an
example. Suppose we want to keep a list of names, addresses, and
phone numbers on disk. Each name will be 20 characters or less,
each address will be 40 characters or less, and each phone number
will be 7 characters. Using the technique previously discussed
each entry in the list would require a sector -- one for name,
one for address, and one for phone.

DEF FIELD #N,20 AS NAS$,40 AS ADS$,7 AS PHS

The 'DEF FIELD' statement is used to name areas within a
Field Buffer for easier manipulation by the BASIC program. 'N'
is a numeric expression identifying which Field Buffer is to be
referenced. In this case three fields are defined. They are
'NAS' (name) as 20 characters, 'ADS$' (address) as 40, and 'PHS$'
(phone) as 7. Suppose that sector 48 of drive 2 contains the
following string:

"R. Shack 1111 Tandy Trail 5550000"

The following program shows how this data is read and accessed

using a Field Buffer:

100 GET #1,20048 'READ THE SECTOR
110 DEF FIELD #1,20 AS NAS$,40 AS ADS$,7 AS PHS
120 PRINT NAS

130 PRINT ADS

140 PRINT PHS

R. Shack (result if RUN)
1111 Tandy Trail
5550000

Note how the DEF FIELD allowed data to be "broken down" into
pieces for simpler processing. In addition three separate data
items are stored on a single sector.

While this is a great improvement, there is more that can be
done. Notice that out of 255 characters possible on a sector,
this example uses only 67 of them, wasting 188 characters! A few
calculations show that the 67 character sequence can be put in

one sector 3 times, leaving 54 characters unused. How 1is this
done?

First we need to get some terminology out of the way.
Whenever we have a group of fields which logically "belong"
together we will call that grouping a "record". 1In the preceding
example one "record" consists of a name, an address, and a phone
number. What we would like to do is get three records on one
sector. There are several ways this can be done. Probably the
most obvious is to give each field in each record a different
name as N1$, AlS$, P1l$, N2$, A2$, and so on. This requires a lot
of typing and will usually require a longer statement than the
255 characters allowed by Level II. If the fields are processed
one at a time we can put a "dummY" record at the front of the
field definitions to skip over the unwanted records. In the

following program a sector is read and all three records in it
are printed:

100 GET #1,20048 'READ THE SECTOR

110 FOR I=0 TO 2 'LOOP 3 TIMES

120 DEF FIELD #1,1*67 AS XX$,20 AS NAS$,40 AS ADS$,7 AS PHS
130 PRINT NAS 'PRINT CURRENT RECORD

140 PRINT ADS
150 PRINT PHS
160 NEXT I

Notice that this program looks pretty much like the previous one
except for the addition of the FOR--NEXT loop and a new field
'XX$'. The first time through the loop (I=0) the dummy field XXS$
will have a lenght of zero. This will position NA$, ADS$, and PHS
as the first items in the sector as in the previous example.
However, in the second pass through the 1loop (I=1]) XX$ has a
length of 67 (one record). The fields NAS$, ADS, and PHS are now
offset 67 characters into the sector. We are actually accessing
a second record in the same sector.

PERCOM MICRODOS

If all this seems hard to understand, keep in mind that the
field variables NAS, ADS$S, and PHS are not data items in
themselves, but are actually NAMES of data items. As an example
of how this works suppose that your newspaper deliverer is very
dull-witted and only leaves a newspaper at house number 123.
Further suppose that there is only one sign with the numbers 123

on it for use by the entire neighborhood. The only way for
everyone to get a newspaper is to move this number from house to
house as each paper is delivered. Accessing data in a

multi-record Field Buffer works the same way. The variable names
("house numbers") are moved from record to record ("house to
house") so the proper data is retrieved.

But suppose we wish to access all the records of a sector at
once. How can we do this? The best way is by using arrays. By
mapping each element of an array over a record 1in the Field
Buffer we can have access to all records at once. Using our
name, address, and phone number example we could do it this way:

100 DIM NAS(2),ADS(2),PHS(2) 'DEFINE ARRAYS

110 GET #1,20048 'READ THE SECTOR

120 FOR I=0 TO 2 'START LOOP

130 DEF FIELD #1,1*67 AS XX$,20 AS NAS(I),40 AS ADS(I),7 AS
PHS (I)

140 NEXT I

200 FOR J=0 TO 2 'PRINT LOOP

210 PRINT NAS (J)
220 PRINT ADS (J)
230 PRINT PH$ (J)
240 NEXT J

At first glance you may be tempted to say that this won't work.
It does 1look a 1lot 1like the previous example, but the array
subscripts are the big difference. Because of subscripting
NAS (0) is NOT the same name as NA$(l). So what we are doing is
giving each record in the sector a unique name rather than moving
the same names from record to record.

Thus far we have had a great deal of discussion about how to
read data into a Field Buffer and access it, but nothing at all
about how the data gets on the disk in the first place. Before
data can be put into a Field Buffer the fields need to be defined
as they were before using the 'DEF FIELD' statement. Getting
data into these defined fields is where things get tricky.
Recall that we said earlier that the wvariables created by the
'DEF FIELD' statement were NAMES of data items rather than data
items themselves. Suppose we try the following example program:

100 DEF FIELD #1,10 AS AS
110 AS$S="HELLO"

120 DEF FIELD 41,10 AS BS
130 PRINT BS

When we print 'B$' we expect to get a friendly "HELLO" greeting.
Suprise! We get nothing of the sort! (What we get depends on
whatever garbage was in Field Buffer 1 before we started.) What
happened? Examining the program, 1line 100 seems alright. We

PERCOM MICRODOS

named the first 10 characters of Field Buffer #1 as 'AS$'. The
"gotcha" comes in line 110. It appears that we are moving
"HELLO" into wvariable 'AS$', but in reality what we are doing is
moving the NAME 'AS$' to the data item "HELLO". Thus we can print
AS and get "HELLO", but we can't seem to find it in the Field
Buffer. Yes, this is confusing, but it is done this way to make
the computer more efficient. So how do we get data into the
miserable Field Buffer?

LSET AS="HELLO" or RSET A$="HELLO"

Enter the heroes! The statements 'LSET' and 'RSET' are used
to MOVE data from one variable to another. Data 1is
left-justified or right-justified depending on which form is
used. If we had used 'LSET' in line 110 of our previous example
program, the result would have been that the first 10 characters

of Field Buffer #1 would contain "HELLO ". Notice the five
trailing spaces. These are provided automatically by 'LSET'.
Use of 'RSET' would have resulted in " HELLO". 1If, however,

we had defined 'A$' as having only 4 characters, both 'LSET' and
'RSET' would have resulted in 'AS$' containing a four-letter word
describing a place that is warm year-round and I don't mean
Florida!

Now that we know how to get data INTO a Field Buffer we will
look at an example program to produce the data that we read in

our previous examples, the name, address, and phone nrumber
records.

100 FOR I=0 TO 2 'START LOOP

110 DEF FIELD #1,1*67 AS XX$,20 AS NAS$,40 AS ADS,7 AS PHS
120 INPUT "ENTER DATA";N$,AS$,PS$ 'GET DATA

130 LSET NAS$=NS 'PUT IN FIELD BUFFER

140 LSET ADS$=AS$

150 LSET PHS$=PS$

160 NEXT 1 'CONTINUE LOOP
200 PUT #1,20048

The last line, 200, actually records the data on disk.

In previous discussions of disk I/0 using string variables,
the amount of data written to disk was always equal to the length
of the string wvariable from which the data was written.
Likewise, the string variable into which the data was read from
the disk, 1is made the same length as the incoming data. When
using Field Buffers MICRODOS must have a similar method to
determine how many characters to actually write. The rule that
is used is that the length of the Field Buffer is assumed to be
as long as the total length of fields defined by the longest DEF
FIELD statement. If necessary a dummy DEF FIELD can be executed
to establish the proper length for the Field Buffer. Following a
GET to a Field Buffer the length of the Field Buffer 1is set to
the length of the data read. However, the length may be changed
by subsequent DEF FIELD statements. For this reason, it is best
to do a DEF FIELD after a GET and before a PUT so the proper
length will be written to disk.

PERCOM MICRODOS

While this scheme may seem restrictive, it does insure that
no "garbage" data is transferred to or from the disk. The
programmer may determine the current length of any Field Buffer
using the function 'LOF'. The format of the function <call Iis

'LOF(N)"' where 'N' 1is an expression indicating which Field
Buffer's length is to be returned. Note that '#' is not required
preceding the Field Buffer number expression. Programmers

wmiliar with the use of 'FIELD' in Radio Shack Disk BASIC should
pay particular attention to the concept of length in conjunction
with Field Buffers. Radio Shack Disk BASIC assumes a length of
255 bytes and always transfers that many characters with each GET
or PUT. MICRODOS users desiring this feature should always do a
dummy DEF FIELD for 255 characters immediately before each PUT.

Our discussions involving I/0 using Field Buffers have all
been oriented toward strings up to this point. How does one
handle numeric data efficiently? Since only string fields can be
defined in the DEF FIELD statement, numeric data must be
converted to string form. Earlier we did this with the 'STRS'
function. This results in needlessly long strings, however, there
is a better way.

MKIS (I), MKS$(S), and MKD$ (D)

The 'MKX' functions make numbers into strings. These
strings, however, contain the numbers in their internal form and
are not directly printable. 'MKI$' makes 1its integer argument
('I') into a string two characters long. 'MKSS' makes a 4
character string out of its parameter 'S', and 'MKDS$' builds an 8
character string from the parameter 'D'. Let us refer to an
earlier example of storing the mathematical constant PI on disk:

100 PI=3.14159 'DEFINE CONSTANT
110 DEF FIELD #1,4 AS PIS 'DEFINE FIELD

120 LSET PIS$=MKSS$ (PI) 'CONVERT TO STRING
130 PUT 41,10045 'WRITE TO DISK

In wusing the 'MKX' functions one must be very careful to define
strings of the proper 1length for the type of number being
converted. Refer to the following table:

NUMBER TYPE REQUIRED STRING LENGTH
Integer 2 characters
Single prec. 4 characters
Double prec. 8 characters

These function solve only half of the problem. There still must
be a way to get strings back into numeric form.

PERCOM MICRODOS

CVI(I$), CVS(S$), and CVD(DS$)

The 'CVX' functions perform the string to number conversion.

'CVI' converts string parameter 'I$' to an integer. 'CVS'
converts 'SS$' to a single precision floating point number and
'CVD' converts 'D$' to double precision. Note that these

functions CANNOT be used to change the type of a number, i.e. do
not use 'CVI' on a string that was created using 'MKS$'. As a
partial protection against this, a 'Function <call' error will
occur if the string parameter for any 'CVX' function is not the
proper length for its number type.

IX. MICRODOS FUNCTIONS

Several of the functions available in MICRODOS have been
discussed 1in previous sections. In this section all other
functions that MICRODOS provides are explained.

LOC(N)

The 'LOC' function 1is wused to get various bits of
information from MICRODOS. 'N', the parameter, indicates what
specific information is desired. If 'N' = 0, MICRODOS returns a

DSSSS number for the last drive and sector accessed. This call
is useful in keeping track of where a program writes its last
data. 'LOC' with a parameter of 1 returns the largest possible
sector that can legally be accessed under the current version of
MICRODOS. This number will vary depending on the model of disk
drive your MICRODOS was designed for. Advance programmers will
find the most wuse for 'LOC' with a parameter of 2. This call
returns the status (in decimal) of the 1771 Disk Controller
following any disk I/0 which results in an error. It is up to
the user to analyze the status to determine the problem. A call
to 'LOC' using an argument of 3 return, as previously discussed,
the number of sectors which could not be verified during a format
using 'CMD"F"' or 'CMD"I"'.

&H - Hexadecimal Constants

For convenience to the programmer knowledgable in machine
language, any constant preceded by '&H' will be interpreted as a
hexadecimal constant. The number may be from 1 to 5 hexadecimal
digits. Constants of this type always represent signed integers.
Hex constants may not be used as response to an INPUT statement
or in a DATA statement. Note that octal (&0) constants are NOT
supported by MICRODOS.

INSTR(N,S1$,5S28) - String search function

Searching a string for the first occurrence of a substring
may be rapidly accomplished using the 'INSTR' function. String
variable or expression 'S1$' is searched for the first occurrence
of the substring specified by variable or expression 'S2S$'. The

- 12 -

PERCOM MICRODOS

first parameter, 'N', 1is optional. 1If present it indicates at
what position within 'S1$' the search begins. A value of 1 is
assumed if 'N' is not present. The value returned by 'INSTR' is
the position in 'S1$' where 'S2$' was found, or zero if no match
could be found. In the following examples string 'AS$' contains
the value "ABCDEFG":

Function call Result
INSTR(AS,"BCD") 2
INSTR (AS,"XY") 0
INSTR(AS,"ABCDEFGHI") 0
INSTR (3,"ABC") 0
INSTR(3,"123123123","12") 4

Additional information may be obtained from the "TRSDOS & DISK
BASIC Reference Manual".

MIDS$ (S1$,N1,N2)=S2$ - String replacement function

Under MICRODOS it is permissible for 'MIDS$' to appear on the
left side of an '=' sign. This may be used to replace a part of
a string with a specified substring. 'sl$' is the string
variable to be operated on. 'N1l' specifies the starting position
for replacement to begin. 'N2', which is optional, specifies how
many characters are to be replaced. 's2$' is a wvariable or
expression for the replacement string. If 'N2' is omitted either
LEN (S2$) or LEN(S1$)-Nl1+1 will be used, whichever is shorter. 1In
the examples below string 'AS$' contains "ABCDEFG":

Expression Resulting A$
MIDS (AS,3,4)="12345" AB1234G
MIDS (AS$,1,2)="" ABCDEFG
MIDS (AS,5)="12345" ABCD123
MIDS (AS,5)="01" ABCDO01G
MIDS (A$,1,3) =" k%" ***DEFG

Additional 1information and examples may be obtained from the
"TRSDOS & DISK BASIC Reference Manual".

DEF USRn / USRn - User machine-language functions

Up to ten external user subroutines may be defined ranging
from 'USRO' to 'USR9'. The address of the entry point to a user
subroutine is specified using 'DEFUSRn=X' where 'n' is the number
of the user routine (0-9) and 'X' is an expression indicating the
entry point address. The expression 'X' must be an integer in

the range -32768 to +32767. User external subroutines are
normally used only by advanced programmers familiar with machine
language. For additional information and examples refer to the

"TRSDOS & DISK BASIC Reference Manual".

- 13 -

PERCOM MICRODOS

DEF FNx - User-defined functions

In addition to the functions intrinsic in Level II BASIC
such as LOG, SIN, etc., as LOG, SIN, etc., it is possible for the
user to define his own implicit functions. This 1is done using
the 'DEF FNx' statement where 'x' is a legal variable name by
which the function will be referenced. For example to define the
mathematical constant Pi as an implicit function:

100 DEF FNPI=3.141592653

Note that this function 1is single precision, thus some of the
digits of the fraction will be lost. Once the 'DEF' has been
executed, the user may refer to the function by name:

200 A=FNPI*R*R
User-defined functions may also have parameters. For example:

100 DEF FNAC(R)=3.14159*R*R
200 INPUT "RADIUS";X
210 PRINT "THE AREA IS";FNAC(X)

In this case a single parameter, 'R', is defined. Note that
should there already be a variable whith the name 'R' it will not
be effected by the function definition. Regardless of how many
parameters may be defined in a function, the number of parameters
in the call must exactly match the number of parameters in the
definition. See the "TRSDOS & DISK BASIC Reference Manual" for
additional information and examples.

X. MICRODOS STATEMENTS

One new statement is provided for by MICRODOS, an
enhancement of the 'INPUT' statement.

LINE INPUT "PROMPT";AS

The 'LINE INPUT' functions much 1like the normal 'INPUT'
statement with the following exceptions:

1. When the statement is executed the prompt, if any, Iis
printed, but no question mark is displayed.
2. Each 'LINE INPUT' may specify only one string variable.

3. Commas, quotes, and colons are accepted as part of the
string input.
4. Leading blanks are also accepted.

For additional information and examples refer to the "TRSDOS &
DISK BASIC Reference Manual".

PERCOM MICRODOS

XI. MICRODOS ERRORS

All errors are reported by MICRODOS using descriptive error
messages. Error code numbers may be derived in 'ON ERROR'
routines by wusing the expression 'ERR/2+1'. Descriptions of
error codes 1 through 23 may be found 1in the "Level 1II BASIC
Reference Manual" published by Radio Shack. 1In this section all
error codes and messages are listed. An explanation of the
MICRODOS-relatedS$Serrors (24 and above) follows. Note that
MICRODOS errors 24 and above cannot be simulated via the 'ERROR'
statement. An attempt to do so will result in the 'UNPRINTABLE
ERROR'.

Error code Error message

1 NEXT WITHOUT FOR

2 SYNTAX ERROR

3 RETURN WITHOUT GOSUB

4 OUT OF DATA

5 ILLEGAL FUNCTION CALL

6 OVERFLOW

7 OUT OF MEMORY

8 UNDEFINED LINE

9 SUBSCRIPT OUT OF RANGE
10 REDIMENSIONED ARRAY

11 DIVISION BY ZERO
12 ILLEGAL DIRECT

13 TYPE MISMATCH
14 OUT OF STRING SPACE

15 STRING TOO LONG
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 NO RESUME
19 RESUME WITHOUT ERROR
20 UNPRINTABLE ERROR
21 MISSING OPERAND
22 BAD FILE DATA
23 FEATURE NOT IMPLEMENTED
24 INVALID DRIVE NUMBER
25 INVALID SECTOR NUMBER
26 DISK READ/WRITE ERROR
27 DISK WRITE PROTECTED
28 DISK OVERFLOW
29 DISK MISSING OR DOOR OPEN
30 FIELD OVERFLOW
31 FUNCTION DEFINITION ERROR
32 INVALID FIELD BUFFER NUMBER
33 DISK DRIVE NOT AVAILABLE
34 DISK SEEK ERROR

35 CAN'T FORMAT DISK

- 15 -

PERCOM MICRODOS

Description of errors 24 and above

Error 24 - INVALID DRIVE NUMBER

This error 1is 1issued when a drive number is encountered
outside the range of 0 through 3.

Error 25 - INVALID SECTOR NUMBER

If the sector referenced in a DSSSS expression 1is either
negative or beyond the 1limit of the disk drive for which the
current version of MICRODOS was designed, this error will be
issued.

Error 26 - DISK READ/WRITE ERROR

When this error 1is 1issued it indicates that, despite
repeated retries, the disk I/0 operation initiated in the failing
line could not be successfully completed. To get the exact disk
controller status use the function 'LOC(2)'.

Error 27 - DISK WRITE PROTECTED

A disk function has been requested which requires writing on
the diskette, but the referenced diskette has a write protect tab
on it.

Error 28 - DISK OVERFLOW

During execution of a 'SAVE' command the end of the disk was
encountered before the 1last line of the program was written to
disk. The program is NOT successfully saved and an attempt to
'LOAD"' it will also result in this error.

Error 29 - DISK MISSING OR DOOR OPEN

A legal drive and sector number have been specified, but
either there is no diskette in that drive or the door was not
closed. This error might also occur if the drive motor were not
turning for some reason.

Error 30 - FIELD OVERFLOW

In a DEF FIELD statement either a single field was defined
for more than 255 characters, or the total of all defined fields
exceeds 255.

PERCOM MICRODOS

Error 31 - FUNCTION DEFINITION ERROR
In processing a DEF FNx statement, the function was not

correctly defined, or an FNx reference was made to a function
that was not defined.

Error 32 - INVALID FIELD BUFFER NUMBER

A Field Buffer number was either less than 1 or greater than
4.
Error 33 - DISK DRIVE NOT AVAILABLE

The drive referenced in the failing line either does not
exist or fails to properly select when accessed.

Error 34 - DISK SEEK ERROR

Following a seek operation (moving the head to a specific
track) the disk controller was unable to verify that the head was
on the proper track.

Error 35 - CAN'T FORMAT DISK

This error can occur two ways. The first is due to a
failure of the write circuitry on the indicated disk drive. The
second is more than 255 sectors which cannot be verified.

PERCOM MICRODOS

XII. OTHER VERSIONS OF MICRODOS

It is conceivable that MICRODOS will evolve into one or more
new versions. Readers who purchased MICRODOS prior to the
completion of this manual may note the absence of any text
concerning the 'FIELD LOAD' and 'FIELD SAVE' statements. These
statements will be dropped in future version of MICRODOS since
they are easily duplicated using LSET and RSET in conjunction
with DEF FIELD.

Percom Data Company provides ongoing support for MICRODOS.
As bugs are reported and fixed, correctional patches will be made
available to registered MICRODOS owners. A patching facility has
been built into the MICRODOS diskette which will allow simple
correction of bugs.

MICRODOS was originally designed as a vehicle for
distribution of application software in a controlled execution
environment. Users with unique needs in a DOS are invited to
write Percom Data Company for a quotation on custom versions of
MICRODOS which can be 1licensed for distribution of software
products.

MICRODOS SYSTEM DISKETTE PRIMER

INTRODUCTION

The MICRODOS system diskette contains four BASIC programs in
addition to the MICRODOS operating system. The first of these is
simply a menu from which to select one of the other three. It is
loaded automatically when MICRODOS is activated by power-up or
reset. Control may be returned to this menu program from any of
the other programs discussed below by using the command 'EXIT'.

In the following sections each of these programs will be briefly
discussed. A section is also included with information on how to
get started with MICRODOS.

PROGRAM 1 - A simple Disk File Manager

Disk file management is one of the features wusually found in
large, complex disk operating systems. Since MICRODOS is not
file oriented, it does not need to have such a system "built-in".
This program is an example of how a file management system might
be developed in BASIC using the disk handling commands in
MICRODOS. It maintains a directory of up to 50 files. Each
directory contains the file name (up to 10 <characters), the
starting and ending sector numbers, the file type (P for program,
D for data file), and a remark field of up to thirty characters.

All commands in the file manager, with the exception of the EXIT
command, may be preceded with a single digit disk drive number
(0-3) and a slash (/) to indicate which disk drive the command is
to be executed on. If the drive number is not provided, drive 0
is assumed.

The INT command is used to INiTialize the disk directory on the
indicated drive. This means writing an empty directory to the
specified disk. Obviously any directory information that may
have existed on the disk prior to the execution of this command
will be lost.

One of the more frequently used commands is the DIR command which
is used to display the DIRectory on the screen. It assumes that
the specified drive contains a properly built disk directory.
All information in the directory is displayed.

To add a file to the disk directory the NEW command is used. It
prompts the user for the necessary file information from the
keyboard. A directory entry is then constructed and inserted in
the directory. If the file is already in the directory the user
will be allowed to replace it if desired.

The DEL command allows a directory entry for a file to be
DELeted. 1If the file does not exist, any attempt to delete it is
reported as an error.

MICRODOS SYSTEM DISKETTE PRIMER

File information may be wupdated with the CHG command. It
requests the name of the file to be changed and prompts the user
through the wvarious entries to be changed. For each item

requested, a response of 'ENTER' will cause that item to be left
unchanged.

If the command entered fails to match one of those previously
described, the directory is searched for a file matching the
command. Should such a file be found, it is checked for a file

type of "P" (Program). If both conditions are met the program is
loaded from disk and executed.

PROGRAM 2 - Disk Utilities

Using the features of MICRODOS most of the <classical disk
utilities can be written in only a few BASIC statements. This
program is included to provide examples of how such utilities
might be written. Each utility is called by name and EXIT is
used to return to the system menu program.

FORMAT is probably the most essential utility. It is wused to
write the necessary control and timing information on new
diskettes so that they may be used by the computer. The essence
of this utility is handled by a single command in MICRODOS. The
remaining code is for parameter entry and validation.

Another popular command is BACKUP. It is used to copy one entire
diskette to another. This function 1is essential 1in business
processing to protect against 1loss of valuable data. This
utility formats the destination diskette and copies the source
disk to it. If the source and destination disk drives are
identical the utility will use all of available memory for disk
buffers to reduce copy time. In keeping with the MICRODOS
philosophy it is never necessary to have more than one floppy
disk drive to use this utility.

If only a part of a diskette is to be copied, the COPY utility is

used. It can be used to copy data from one disk to another or
even to copy data from one part of a disk to another part of the
same disk. All available memory is used for buffers to reduce

the copy time. Like all of the MICRODOS wutilities the COPY
routine uses no machine language routines, only BASIC.

Available space on a diskette can be 1located wusing the FREE
utility. This routine searches a diskette for empty sectors, an
empty sector being determined by having a data 1length of =zero.
The number of each empty sector found is displayed on the screen.

The readability of a disk may be checked with the VERIFY command.

This command reads every sector on the specified diskette. All
sectors which cannot be read are displayed on the screen. A

-II-

MICRODOS SYSTEM DISKETTE PRIMER

summary is given of how many bad sectors were found and what
percentage of the disk that they represent.

Disk space may be released by the ERASE utility. It writes empty
sectors over the range specified, thereby allowing those sectors
to be displayed during operation of FREE.

DUMP is a very useful utility for determining what 1is actually
recorded on a file. It reads the sector(s) specified and
displays them on the screen as printable characters. Any
character which is not 1in the printable ASCII set is replaced
with a graphic "block" (all elements on).

PROGRAM 3 - The Percom 5 1/4 Inch Notebook

This program is a sample application written using MICRODOS. It
functions like a notebook in that entries can be written on disk
with it and read back. A very simple Table of Contents is
maintained for ease in retrieval of information. The notebook
comes "pre-loaded" with information about each of the MICRODOS
Disk BASIC statements. User data may be added to the unused
pages.

Data in the Percom Notebook is structured as "pages" of data. A
page 1is 15 lines of a screen display. Pages are numbered, as in
a normal notebook, and are accessed by number. The table of

contents is kept on page 0 and 1is accessed using that page
number. Entries in the table of contents consist of a key word of
eight characters or less and the page number associated with that
key word.

Data is retrieved using the READ command followed by the page
number to be accessed. The indicated page 1is retrieved and
displayed on the screen. A flashing prompt then waits for a
single key entry indicating what should be done next. Entry of a
right arrow will cause the "next" page (i.e. current page + 1)
to be displayed. Using the left arrow will cause the "previous"
(current page - 1) page to be displayed. To terminate the READ
command and return to the command menu, type 'X'.

Data 1is entered into the notebook wusing the WRITE command
followed by the page number on which the data is to be written.
Up to 15 lines of data may be typed on any page. Each line may
contain up to 62 characters. The system will prompt for each
line by displaying the 1line number at the left margin of the
screen. If the line typed is too long, an error will be indicated
and the line will have to be retyped. Should the user desire to
enter fewer than 15 lines he may enter a line consisting of only
the 'ENTER' key. The page will then be immediately written to
the disk. 1If a blank line is to be written it should be entered
as a single space followed by 'ENTER'. After the page is entered
and written to disk the flashing prompt will appear. The options

-III-

MICRODOS SYSTEM DISKETTE PRIMER

are left arrow, right arrow, and 'X' as described for READ.

Use of the WRITE command to page 0 will cause the program to
behave somewhat differently. In this mode the Table of Contents
may be updated. A request will be made for a keyword of up to 8
characters. The Table of Contents will be searched for this
word. If not found the user will then be given an opportunity to
enter it into the notebook. Should he decide to do this, a
prompt will be made for the page which the keyword 1is to
reference. Upon locating a keyword in the Table of Contents, the
user will be asked if he wishes to update the entry or delete. A
'Y' response will cause a prompt for a page number. Entry of a
non-zero page number will cause the old number to be replaced,
while a response of 0 causes the entry to be deleted.

Use of the NEW command will generate a completely blank notebook.
The drive and sectors to be used are encoded in the first few
lines of the program. This version is set to wuse sectors 200
through 399 on drive 0. It is recommended that this command not

be used until the software diskette has been duplicated using the
BACKUP utility.

While a brief description of each command is given in the command
menu, additional information may be obtained wusing the HELP
command. This command displays somewhat more detailed data
relative to the wuse of the commands. It then returns to the
command menu.

PROGRAM 4 - A Disk Diagnostic Test

If a question should arise concerning the operational status of a
disk drive, this utility may be used. It is designed to exercise
all the functions of the disk drive in order to establish that it
is working correctly. This test is performed in three phases.

During Phase 1 the entire diskette under test is formatted. This
is a process which writes address and control information on each
track of the diskette to make it accessible to the computer. The
format process is inherently destructive and WILL DESTROY ALL
DATA ON THE DISK. Therefore, before running the Disk Test, BE
SURE THE DISKETTE THAT IS IN THE DRIVE BEING TESTED HAS NO
CRITICAL DATA ON IT. Do not run Disk Test on the MICRODOS
diskette, as it will destroy the data on the diskette.

At the conclusion of Phase 1 a message is printed giving how many
sectors, if any, could not be verified after formatting. Phase 2
then begins. During this phase 100 random sectors are written
with a special data pattern.

In Phase 2 the 100 sectors are read and checked against the

pattern. If any sector fails to compare or if any error |is
encountered on the disk, a message is displayed indicating the

-1V~

MICRODOS SYSTEM DISKETTE PRIMER

type and sector location of the error.

At the conclusion a summary is given showing the number of errors
encountered during the test.

PROGRAM 5 - Exit to BASIC

This program is actually not a program at all, but a simple means
of getting back to BASIC for user programming. When this option
is selected a NEW will be performed, clearing the screen and
displaying 'READY'. Control may be returned to the MICRODOS
System Diskette either by pushing the 'RESET' button or by typing
'LOAD 30,R'.

GETTING STARTED

Before attempting to do anything with MICRODOS it is a good idea
to make a backup copy. This may be done by selecting Program 2
from the System Diskette Menu, the Disk Utilities. From the
Utility Menu select the 'BACKUP' utility. This will then prompt
for the drive number of the source diskette (drive to copy
'from'). Type 0 and 'ENTER'. A prompt will then be displayed for
the drive number of the destination diskette (drive to copy
'to'). If you have more than one disk drive, insert a blank
diskette in drive 1, type 1, and push 'ENTER'. The backup will
then occur automatically.

Single drive users should type 0 and 'ENTER'. A prompt will then
display to load the source diskette and push 'ENTER'. When this
has been done as many sectors will be loaded as can be put in
memory. Then a prompt will display to 1lcad the destination
diskette and push 'ENTER'. At this time replace the MICRODOS
diskette with a blank and push 'ENTER'. The blank diskette will
be formatted and the sectors in memory will be written to it.
Then a prompt will again display for the source diskette.
Replace the MICRODOS diskette in drive 0 and push 'ENTER'. This
process will repeat until the entire diskette has been copied.

MICRODOS
A DISK OPERATING SYSTEM FOR THE TRS-80

MICRODOS 1is a very simple yet powerful disk operating system for
the Radio Shack TRS-80 computer. It is completely resident in
less than 7K of RAM and requires no disk files to be mounted once
the operating system 1is loaded. MICRODOS operates entirely
within the realm of Radio Shack Level II BASIC providing both DOS
and Disk BASIC functions. Since all commands are issued in
BASIC, MICRODOS does not access the disk through traditional file
structures. It offers instead commands to access data anywhere

on the disk, thus allowing the programmer full control over the
organization and access of the disk.

MICRODOS occupies the first 20 sectors of a disk (sectors 0 =-19).
No other disk space is used and the MICRODOS diskette may be
removed once MICRODOS has been loaded.

MICRODOS is NOT compatible with the Radio Shack Disk Operating
System (TRSDOS). Furthermore it may be necessary to modify some
programs written in Radio Shack Disk BASIC to function properly
with MICRODOS, particularly if the programs create or use disk
data files.

MICRODOS COMMANDS:

CMD "F",D

Formats the disk on drive D (0<D<3). Formats the entire
disketted with full verification.

CMD "H",AS
Moves string A$ to a special buffer which is displayed when
'Booting'. The String length is limited to 128 characters. Use

the ‘'down arrow' (1) for the NEW LINE character. You must use
CMD "M" (described later) to get this heading onto the disk.

CMD "K",AS

Moves string A$ to a buffer which is fed to BASIC as keyboard
entries on 'Booting'. Same restrictions as CMD "H". Useful for
automatically starting a program.

cCMp "I",D

Formats a diskette in drive D (D = 0,1,2,3) and writes a copy of
MICRODOS on the diskette beginning at sector 0.

CMD "M",D

Writes the MICRODOS system to the diskette in drive D beginning
at sector 0.

BASIC COMMANDS

LOAD DSSSS(,R)

loads the program on drive D, sector SSSS. DSSSS is a number or
variable in which the first digit is the drive number (0 - 3),
and the last four digits are the sector number. This command may
optionally be followed by a comma and 'R' to cause the program to
automatically run after it is loaded.

SAVE DSSSS

Saves the program in memory on drive D beginning at sector SSSS.
Use the LOC(0) command (described later) to determine the last
sector used.

MERGE DSSSS

Merges the program on drive D beginning at sector SSSS with the
program already in memory.

DISK I/0 STATEMENTS:

GET AS,DSSSS

The statement reads the contents of sector SSSS on drive D into
string A$. The length of AS$ reflects the amount of data read and
may be 0. DSSSS may be a number or a variable.

PUT AS$,DSSSS

This statement writes the contents of string AS to sector SSSS on
drive D. AS may range in 1length from 0 to 255 bytes
(characters). DSSSS may be a number or a variable.

DEF FIELD #N,Nl1 AS F1§,...,NI AS FIS

Defines a disk buffer N as fields F1$ to FIS$, having lengths N1
to NI respectively. Lengths may be expressed as a number or as
an expression. If an expression is used, it must be enclosed in
parentheses (). Maximum buffer size is 255 characters. Data may
be placed in field buffers using LSET or RSET statements in
conjunction with MKI$, MKS$, AND MKD$ for number to string
conversion. Functions CVI, CVS, and CVD are use to extract
numeric data from strings (string to number conversion).

DISK I/0 FUNCTIONS:

LOC (N)

This function returns a value depending on argument N.

LOC (0) = The last DSSSS accessed
LOC (1) = The largest possible SSSS for the
current version of MICRODOS
LOC (2) = The disk controller status after
an error
LOF (N)

This function returns a value which is the total length of all
fields in buffer N. The value returned will range from 0 to 255.

CONVERSION AND PLACEMENT FUNCTIONS:

LSET AS
RSET AS

BS
BS

These statements are used to place string data in a disk buffer.
LSET left justifies within a field, blank filling on the right.
RSET right justifies with blank filling on the left.

MKIS (I)
MKSS (S)
MKDS (D)

These functions are used to store numeric data compactly in a
string buffer. They convert integers, single precision, and
double precision numbers to strings of 2, 4, or 8 Dbytes
respectively.

CVI (IS)
CVSs (S$)
CVD (D$)

These functions are the converse of MKI$, MKS$, MKDS. They

convert numeric string data in string fields back to numeric
values.

OTHER FUNCTIONS AND FEATURES:

&H - Hexadecimal Contants

INSTR (N,S1$,S2$) - String search function

MID$ (S1$,N1,N2) = S2$ - String replacement function
DEF FNx - User definged functions

DEF USRn / USRn - User machine language functions
LINE INPUT "PROMPT";AS

PERCOM DATA COMPANY JUNE 4, 1979
COPYRIGHT (C) 1979

ADDENDUM FOR MICRODOS 1.10 (RELEASED 6-4-79)

WHEN THE MICRODOS SYSTEM DISKETTE IS LOADED (BY POWER-ON OR RESET) IT
AUTOMATICALLY LOADS A MENU PROGRAM TO EXECUTE THE PREPROGRAMMED
UTILITIES. TO ESCAPE THIS MENU AND RETURN TO BASIC, SIMPLY PUSH THE
'BREAK' KEY.

VERSION 1.10 OF MICRODOS CHANGES SOMEWHAT THE WAY IN WHICH

DISKETTES ARE FORMATTED. VERSION 1.00 WOULD ABORT THE FORMAT

IF ANY SECTOR WAS FOUND WHICH COULD NOT BE READ AFTER 9 ATTEMPTS TO
FORMAT IT. 1IN REVISION 1 (CHANGING VERSION 1.00 TO 1.10) THE FORMAT
OPERATION WAS CHANGED TO ALWAYS COMPLETE WITHOUT ERROR UNLESS THE
DISK COULD PHYSICALLY NOT BE FORMATTED DUE TO DISK WRITE BEING
INOPERATIVE OR MORE THAN 255 BAD SECTORS BEING FOUND. AT THE END OF
THE FORMAT THE NUMBER OF BAD (I.E. UNREADABLE AFTER 9 TRIES) SECTORS
MAY BE ACCESSED USING THE FUNCTION CALL 'LOC(3)'. THIS VALUE WILL
BE INITIALLY SET TO O AND WILL THEREAFTER CONTAIN THE NUMBER OF

BAD SECTORS FOUND DURING THE MOST RECENT 'CMD"F"' OR 'CMD "I"'
COMMAND.

MICRODOS 1.10 IS BEING SHIPPED CONFIGURED FOR EITHER SIEMENS (*) OR
PERTEC DISK DRIVES SOLD BY PERCOM DATA COMPANY. THIS CONFIGURATION
ALLOWS FOR 40 TRACKS AND A TRACK TO TRACK STEPPING TIME OF 20
MILLISECONDS. SINCE YOU MAY NOT BE USING MICRODOS ON A PERCOM DISK
DRIVE, THE FOLLOWING INFORMATION IS PROVIDED FOR ADAPTING IT TO YOUR
HARDWARE.

1. CHANGING THE NUMBER OF AVAILABLE TRACKS--
TO ALTER FOR 35 TRACKS ENTER THE FOLLOWING:
POKE 17554,35 : CMD"M",0
THIS WILL SET THE TRACK LIMIT TO 35 AND WRITE
THE MODIFIED DOS TO DRIVE 0.

2. CHANGING THE STEPPING TIME--
TO CHANGE THE STEP TIME TO 40 MILLISECONDS ENTER
THE FOLLOWING:
POKE 17556,3 : CMD"M",0
THIS WILL CHANGE THE STEP TIME AND WRITE THE MODIFIED
DOS TO DRIVE 0.

IMPORTANT NOTE

DISK DRIVES SOLD BY RADIO SHACK ARE CAPABLE OF ONLY 35 TRACKS OF
STORAGE AND WILL NOT STEP FASTER THAN 40 MILLISECONDS. IF YOU ARE
USING MICRODOS ON A SYSTEM WHICH CONTAINS ONE OR MORE RADIO SHACK
DISK DRIVES YOU MUST APPLY THE ABOVE PATCHES FOR PROPER OPERATION.

* SIEMENS DISK DRIVES WERE FORMERLY SOLD AS WANGCO/PERKIN-ELMER

PERCOM DATA COMPANY JuLy 11, 1@7¢
COPYRIGHT (C) 1979

MICRCDOS (TM) PATCII PROCRAM

THE FCLLOWING PROGRAM IS INTENDED TC BE USED IN APPLYING CORPECTIVE
PATCHES TO THE PERCOM MICRODOS (TM) DISK OPERATIMG SYSTEM. ENTER
IT CAREFULLY AS TYPOGRAPHICAL ERRORS COULD CAUSE VERY UNDESIRAELE
RESULTS.

100 CLEAR 1000

110 CLS : PRINT "PERCOM PATCH UTILITY VERSION 1.00"

120 PRINT "COPYRIGHT (c) 197¢ PERCOM DATA COMPANY"

130 PRINT

200 PRINT "PHASE 1 - PATCH VALIDATION®

21C LN=20060 : EC=0 -

530 GOSUB 1000 : IF VL=0 THEN 300 =*>0 &k=7#

24C GOSUB 1000 : GOSUB 1000

250 FCR I=1 TO VL : GOSUB 1000 : NEXT

250 CK=-CK : GOSUB 1007

27C IF CK=0 THEN 290

280 PRINT "ERROR IN PATCH LTNE";LN : FC=EC+]

200 LN=LN+1 : GOTO 220

200 IF EC>C THEN PRINT "PATCHING ABORTED DUE TO ERRCRS" : END
310 RESTORE : PRINT "PHASE 2 - PATCH APPLICATION"

320 READ VL : IF VL=0 THEN 500

230 AD=VL*2556 : READ VL : AD=AD+VL : TF AD>?275f THEN AD=AD-7%525
240 READ LN

3506 FOR I=1 TO LN

260 READ VL

370 POKE AD-1+1,VL

380 NEXT I

390 READ CK : GOTO 320

500 PRINT "PHASE 3 - REWRITE SYSTEM"

510 INPUT "PUSH 'ENTER' WHEN SYSTEM DISK CN CRIVE O";R%
520 CMD"M",0 : END
1000 READ VL : CK=CK+VL : IF CK>255 THEN CK=CK-257%
1010 RETURN

-

PERCOM DATA CO. PM-TFD-100-001
COPYRIGHT (c) 197¢ TFD-10C FLOPPY DISK
PATCH MEMO JULY 11, 197¢

PRODUCT: PERCOM MICRODOS DISK OPERATING SYSTEM VERSION 1.10

PROBLEMS SOLVED:
1. IN 'LOAD'INC AND 'MERGE'ING PROGRAMS MICRODOS DCES NOT TAKE
INTO CONSIDERATION THE FACT THAT THE PROGRAM MAY EXCEED THE
MEMORY CAPACITY OF THE COMPUTER. IF SUCH IS THE CASE THE SYSTEM
WILL MALFUNCTICN UNPREDICTABLY.

PATCH APPLICATION

TC APPLY THE PATCHES ON THIS MEMO IT IS FIRST NECESSARY TO LOAD
THE MICRODOS PATCH UTILITY PROGRAM INTO MEMORY. THIS PROGRAM IS
PROVIDED ON SECTOR 40 OF THE MICRODOS SYSTEM DISKETTE FOR ALL
CCPIES OF MICRODOS VERSION 1.11 OR LATER. A COPY OF THE PROGRAM
IS ALSO INCLUDED WITH THIS PATCH MEMO. IF ENTERING THE PATCH
UTILITY PROGRAM BY HAND, BE ESPECIALLY CAREFUL, AS ERRORE COULD
HAVE VERY UNDESIRABLE RESULTS.

ONCE THE PATCH UTILITY HAS BEEN LOADED THE PATCH LINES MUST BE
ENTERED MANUALLY. WORK SLOWLY AND CAREFULLY TO AVOID MAKING
MISTAKES. WHEN ALL PATCH LINES HAVE BEEN ENTERED TYPE 'RUN' TO
-APPLY THE PATCHES. THE PATCH UTILITY WILL DISPLAY A HEADING AND
THE MESSAGE 'PHASE 1 - PATCH VALIDATION', DURING THIS PHASE THE
PATCH LINES ARE EXAMINED FOR POSSIBLE TYPING ERRORS. IF ANY ERRORS
ARE FOUND THE OFFENDING LINE NUMBER IS DISPLAYED ALONG WITH THE
MESSAGE 'PATCHING ABORTED DUE TO ERRORS'. THE LINE IN ERROR SHOULD
BE CORRECTED AND THE PROGRAM 'RUN' AGAIN. ONCE ALL LINES HAVE BEEN
VERIFIED CORRECT THE PATCH UTILITY WILL DISPLAY 'PHASE 2 - PATCH
APPLICATICN'. AT THIS TIME THE PATCHES ARE ACTUALLY APPLIED TO

THE MICRODOS CURRENTLY RESIDING IN MEMORY. WHEN THIS PROCESS IS
COMPLETE THE MESSAGE 'PHASE 2 - REWRITE SYSTEM' WILL BE DISPLAYED.
THE UTILITY WILL THEN PROMPT 'PUSH ENTER WHEN SYSTEM DISK ON DRIVE
0'. AT THIS TIME LOAD THE DISK WHICH 1S TO RECEIVE THE UPDATED
COPY OF MICRODOS INTO DISK DRIVE 0 AND PUSH 'ENTER'. THE PATCHED
MICRODOS WILL BE WRITTEN TO THAT DISK AND THE UTILITY WILL RETURN
TO THE 'READY' PROMPT IN BZ?SIC. IF OTHER DISKS ARE TO BE PATCHED
THEY MAY BE UPDATED AT THIS USING THE 'CMD"M"' COMMAND TO

WRITE THE UPDATE DOS ON THEM.

PATCH LINES - ENTER EXACTLY AS SHOWN

2000 DATA 72,205,3,205,140,85,199

2001 DATA 74,12,1,583,145

2002 DATA 74,66,5,205,93,27,24,193,175

2003 DATA 85,140,18,34,144,68,5¢,161,64,61,61,18¢,208,205,77,27,
30,12,195,162,25,231

2004 DATA 69,67,1,49,185, ¢

DOCUMENTATION CHANGES

WITH THE APPLICATION OF THESE PATCHES YOUR COPY OF NICRODOS IS
ELEVATED TO VERSION 1.11. NO OTHER DOCUMENTATION CHANGES ARE
NECESSARY. PLEASE REFER TO THIS VERSION IN ANY CORRESPONDENCE
RELATIVE TO MICRODCS.

PERCOM DATA CO. PM-TFD-100-002
COPYRIGHT (c) 1979 TFD-100 FLOPPY DISK
PATCH MEMO JUuLy 11, 1979

PRODUCT: PERCOM MICRODOS DISK OPERATING SYSTEM VERSION 1.11

PROBLEMS SOLVED:
1. IN 'SAVE'ING PROGRAMS MICRODOS WILL, IN RARE INSTANCES, REPORT
THE LAST SECTOR USED AS ONE LESS THAN IT SHOULD. THIS COULD CAUSE
UNDESIRED CONCATENATION OF PROGRAMS, OR THE AFPENDING OF GARBAGE TO
A PROGRAM WHEN IT IS 'LOAD'ED.

PATCH APPLICATION

TO APPLY THE PATCHES ON THIS MEMO IT IS FIRST NECESSARY TO LOAD
THE MICRODOS PATCH UTILITY PROGRAM INTO MEMORY. THIS PROGRAM IS
PROVIDED ON SECTOR 40 OF THE MICRODOS SYSTEM DISKETTE FOR ALL
COPIES OF MICRODOS VERSION 1.11 OR LATER. A COPY OF THE PROGRAM
IS ALSO INCLUDED WITH THIS PATCH MEMO. IF ENTERING THE PATCH
UTILITY PROGRAM BY HAND, BE ESPECIALLY CAREFUL, AS ERRORS COULD
HAVE VERY UNDESIRAELE RESULTS.

ONCE THE PATCH UTILITY HAS BEEN LOADED THE PATCH LINES MUST BE
ENTERED MANUALLY. WORK SLOWLY AND CAREFULLY TO AVOID MAKING
MISTAKES. WHEN ALL PATCH LINES HAVE BEEN ENTERED TYPE 'RUN' TO
APPLY THE PATCHES. THE PATCH UTILITY WILL DISPLAY A HEADING AND
THE MESSAGE 'PHASE 1 - PATCH VALIDATION'. DURING THIS PHASE THE
PATCH LINES ARE EXAMINED FOR POSSIBLE TYPING ERRORS. IF ANY ERRORS
ARE FOUND THE OFFENDING LINE NUMBER IS DISPLAYED ALONG WITH THE
MESSAGE 'PATCHING ABORTED DUE TO ERRORS'. THE LINE IN ERROR SHOULD
BE CORRECTED AND THE PROGRAM 'RUN' AGAIN. ONCE ALL LINES HAVE BEEN
VERIFIED CORRECT THE PATCH UTILITY WILL DISPLAY 'PHASE 2 - PATCH
APPLICATION'. AT THIS TIME THE PATCHES ARE ACTUALLY APPLIED TO

THE MICRODOS CURRENTLY RESIDING IN MEMCRY. WHEN THIS PROCESS IS
COMPLETE THE MESSAGE 'PHASE 3 - REWRITE SYSTEM' WILL BE DISPLAYED.
THE UTILITY WILL THEN PROMPT *PUSH ENTER WHEN SYSTEM DISK ON DRIVE
0'. AT THIS TIME LOAD THE DISK WHICH IS TO RECEIVE THE UPDATED
COPY OF MICRODOS INTO DISK DRIVE 0 AND PUSH 'ENTER'. THE PATCHED
MICRODOS WILL BE WRITTEN TO THAT DISK AND THE UTILITY WILL RETURN
TO THE 'READY' PROMPT IN BASIC. IF OTHER DISKS ARE TO BE PATCHED
THEY MAY BE UPDATED AT THIS USING THE 'CMD"M"' COMMAND TO

WRITE THE UPDATE DOS ON THEM.

PATCH LINES - ENTER EXACTLY AS SHOWN

2000 DATA 73,105,3,205,158,85,117

200) DATA 85,158,9,183,192,125,60C,200,241,195,119,73,104
2002 DATA 69,67,1,50,187, @

DOCUMENTATION CHANGES
WITH THE APPLICATION OF THESE PATCHES YOUR COPY OF NICRODOS IS
ELEVATED TC VERSION 1.12. NO OTHER DOCUMENTATICN CHANGES ARE
NECESSARY. PLEASE REFER TO THIS VERSION IN ANY CORRESPONDENCE
RELATIVE TO MICRODOS.

PerCom Data Company, Inc. 11/26/79
Copyright (c) 1979

A Procedure for Copying Programs
from TRSDOS (tm) Diskettes to MICRODOS (tm) Diskettes

The following steps provide a simple means to copy any program in
BASIC from a TRSDOS (tm) diskette to a MICRODOS (tm) diskette.

1. Load the MICRODOS (tm) operating system using either power-on
or the RESET button. Insert a blank diskette in drive 0 and
type the following commands:

CMD"KII ' nn

CMD"I",0
The diskette in drive 0 will be initialized to hold the
program being copied.

2. Put the TRSDOS (tm) diskette in drive 0 and push the RESET
button. Then load Disk BASIC in the normal fashion.

3. Take a piece of paper and write the letters A, B, C, and D in
a column.

4. Load the BASIC program to be copied. Then type the following

commands:

PRINT "A=";PEEK(16548)

PRINT "B=";PEEK(16549)

PRINT "C=";PEEK(16633)

PRINT "D=";PEEK(16634)
Values will be printed on the screen for A, B, C, and D.
Copy the values to your paper next to the 1letters already
written there.

5. Load the previously initialized MICRODOS (tm) diskette in
drive 0 and push the RESET button. When BASIC is 'READY',
using your scratch paper, type in the following commands:

POKE 16548, (Value on paper for A)
POKE 16549, (Value on paper for B)
POKE 16633, (Value on paper for C)
POKE 16634, (Value on paper for D)

6. The program to be copied is now in memory. You may verify
this by LISTing it. It may now be put on a MICRODOS (tm)
diskette using the SAVE command.

That's all there is to it! If you are going to continue to
run in MICRODOS (tm), it is a good idea to push RESET after
saving the program. This is necessary to restore the usable
memory to the MICRODOS (tm) size, as it is actually "shrunk"
for the copy procedure.

TRSDOS is a trademark of Tandy Corporation.
MICRODOS is a trademark of PerCom Data Company, Inc.

